
K1DM3

Control System

Software User’s Guide

William Deich

University of California Observatories

07 Jan 2020
ver 3.7b

Contents

1 Overview 6
1.1 Active Components of K1DM3 . 6

1.1.1 Drum . 6
1.1.2 Swingarm . 9

1.2 Position Summary . 13
1.3 Motion Controllers . 13
1.4 Software . 14

1.4.1 Back-end Services . 14
1.4.2 End-User Applications . 15

1.5 K1DM3 Private Network . 15

2 Starting, Stopping, Suspending Services 17
2.1 Starting/Stopping . 17
2.2 Suspending Dispatchers . 19
2.3 Special No-Dock Engineering Version . 19
2.4 Periodic Restarts . 20

3 Components, Assemblies, and Sequencers 21
3.1 Elementary Components . 21
3.2 Compound Keywords . 22
3.3 Assemblies . 22
3.4 Sequencers . 23
3.5 The ACTIVATE Sequencer . 24
3.6 The M3AGENT Sequencer . 27
3.7 Monitoring Sequencer Execution . 27

4 Dispatcher Interfaces for Routine Operations 29
4.1 TCS Operations . 31
4.2 M3AGENT . 32
4.3 Hand Paddle . 33

4.3.1 LED’s . 34
4.3.2 Buttons . 35

5 GUI’s 36
5.1 Tcsgui . 36
5.2 The Engineering GUI . 38
5.3 The K1dm3mon GUI . 40

2

ver 3.7b CONTENTS

6 Restrictions & Interlocks 41
6.1 Introduction . 41
6.2 Bypassing the M3AGENT Sequencer . 42
6.3 Conditions Without Override . 43

6.3.1 Swingarm . 43
6.3.2 Drum . 44

6.4 Overridable Conditions . 44

7 Recovery From Failures 47
7.1 General Troubleshooting Tips . 47
7.2 Low-level Actuator Operations . 48
7.3 Specific Issues . 49

7.3.1 Reconnect failure . 49
7.3.2 Amplifier fault . 50
7.3.3 Erroneous unclosed-clamps . 50
7.3.4 Actual unclosed clamps . 51
7.3.5 Air supply nozzle will not disconnect. 52
7.3.6 Need to operate swingarm, mirror facing down 52
7.3.7 Software lockout is active . 53
7.3.8 SASS: Swingarm past deploy point . 53
7.3.9 SASS: Swingarm in hard stop . 53
7.3.10 SASS: misaligned arms . 54
7.3.11 SASS: Arms misaligned and are past deploy point 54
7.3.12 SASS: overshot V-blocks . 55
7.3.13 SASS: impossible encoder value . 55
7.3.14 Docking pin becomes stuck . 55
7.3.15 Docking pin position error . 56
7.3.16 In-tower signal failure . 56

7.4 Power Outage . 56
7.5 SASS Temporary Override Procedure . 58

8 Swingarm Safety System (SASS) 60
8.1 Background . 60
8.2 The Safety Monitor and Outputs . 60
8.3 k1dm3saf . 62

9 The K1DM3 Monitor 64

10 Galildisp Configuration 66
10.1 Major Elements of Control . 66

10.1.1 Motor Axes and Digi-Axes . 66
10.1.2 Non-Axis Keywords . 67
10.1.3 Sequencers . 67

10.2 Dispatcher and Controller Information . 68
10.3 Configuration Files . 68

10.3.1 Template and Definition files . 69
10.3.2 The .defs and XML files . 69
10.3.3 The .conf files . 69

10.4 Custom Dispatcher Code . 70

3

CONTENTS ver 3.7b

11 Utility Programs 71
11.1 k1dm3.summarize . 71
11.2 k1dm3.status.email . 74
11.3 k1dm3.io . 74

12 k1dm3 KTL Service Keywords 75
12.1 Dispatcher Keywords . 75
12.2 Controller Keywords . 77
12.3 Digi-Axis Keywords . 78
12.4 Motor-Axis Keywords . 79
12.5 Assembly (Combo-Axis) Keywords . 87

12.5.1 Motor-like Assemblies . 87
12.5.2 Digi-like Assemblies . 89

12.6 Status from Safety System . 91
12.7 TCS Interface Keywords . 91
12.8 Major Sequencer Keywords . 92
12.9 Elevation Keywords . 93
12.10Environment Keywords . 94
12.11Other Keywords . 95

13 k1dm3saf KTL Service Keywords 98

14 k1dm3mon KTL Service Keywords 101

A Useful Numbers 104
A.1 Network Addresses . 104
A.2 Swingarm Safety System . 105
A.3 Swingarm Actuators . 106
A.4 Drum . 107
A.5 Typical Move Times . 108
A.6 Other Numbers . 108

B Actuator Calibration and Position Adjustment 109
B.1 Swingarm Absolute Encoders . 109
B.2 Drum Readhead . 110

C Modifying k1dm3saf Galil Code 111

D Modifying k1dm3 Galil Code 114
D.1 Introduction . 114
D.2 Downloading Code for Galildisp . 115

E How to do a Fresh Install 118
E.1 Backups . 118
E.2 System Configuration . 118
E.3 Software Installation . 119

Bibliography 119

Subject Index 121

4

ver 3.7b CONTENTS

KTL Keyword Index 124

5

Chapter 1

Overview

1.1 Active Components of K1DM3

The K1DM3 module is conceptually simple. It has just two degrees of freedom: the inner
drum rotates to move the tertiary mirror to any instrument position (Nasmyth, “bent-
Cassegrain,” or Cassegrain orientation), and the swingarm moves the mirror in or out of
the Cassegrain light path. This section summarizes all the components that are visible to
the control system.

Figure 1.1: The K1DM3 Module, swingarm deployed (left) and retracted (right).

1.1.1 Drum

The drum’s rotation is driven by a Magmotor C33-H-400 servomotor (fig 1.2). Accurate
position feedback is provided by a Renishaw LM10 encoder system, using an encoder tape

6

ver 3.7b 1.1. ACTIVE COMPONENTS OF K1DM3

with 5µ resolution mounted on the inner drum, and a readhead mounted on the outer drum.
The tape has distance-coded reference marks, allowing the drum to home within ∼ 20 cm
motion from any position. Additionally, there are limit switches at the Cass/Stow and
MirrorUp (6- and 12-o’clock) positions. These switches provide the ability for the drum
to be calibrated with no motion whatsoever at those two positions, which is important for
bootstrapping the system from a cold start.

Figure 1.2: The drum rotation drive.

Each instrument position around the drum, plus the 6- and 12-o’clock positions, is
defined by a detent. The detent is engaged by a detent mechanism after the motor drives
the drum to the instrument position (fig 1.3, upper). The motor’s drive gear is set up with a
large amount of backlash — nearly 1900 motor encoder counts — between it and the drum’s
ring gear. This enables the option of finishing a move sequence with the motor backing off
by ∼1/2 backlash, before engaging the detent mechanism to pull the drum into the final
position. It turns out that the drive reliably positions the drum to 2 load encoder counts, or
10µ, and that the detent mechanism can easily pull the drum into final position regardless
of whether the motor is engaging firmly with the gear ring, so the large backlash is not in
fact required, and this optional end-of-move sequence is not implemented.

The detent mechanism uses a Bimba air cylinder that drives a steel wheel into or out
of one of the position-defining V-blocks (fig 1.3, lower). If air pressure is lost, the detent
will disengage. Two limit switches indicate when the detent mechanism fully engaged or
disengaged.

The module is balanced when the swingarm is deployed and clamped in the V-blocks,
but is imbalanced when the swingarm is retracted out of the light path. The imbalance is
not a problem in the gravity-stable Cass/Stowed (mirror facing downwards) position, but
can present a danger in the “MirrorUp” orientation. If the motor is unpowered, and the
swingarm is not in a gravity-stable orientation, then the out-of-balance drum can rotate
dangerously under gravity. Therefore, to ensure safe operation at all times, the swingarm
may not be retracted except when (a) the drum is in the gravity-stable orientation, or (b)
the drums are pinned together to prevent rotation.

In addition to rotating the inner drum, the drum control system is responsible for sup-
plying compressed air, power, and networking to the inner drum’s swingarm controls. The

7

CHAPTER 1. OVERVIEW ver 3.7b

Figure 1.3: Upper:The detent mechanism (pink), showing its engaged and disengaged posi-
tions; and the position V-blocks (red). Lower: The air supply mechanism

compressed air is supplied through a nozzle that extends to engage with a receiver on the
inner drum, or retracts when the drum must be rotated. Extension and retraction of the
nozzle is controlled by an air cylinder. A limit switch indicates when the nozzle is retracted.

8

ver 3.7b 1.1. ACTIVE COMPONENTS OF K1DM3

(The engaged position is affirmed by the presence of air pressure at the inner drum.) The
nozzle can engage a receiver at either the 6- or 12-o’clock positions.

The inner drum receives power through a set of contacts and brushes that are akin to
short segments of slip rings. Sets of contacts are installed at each detent position, but power
to the inner drum is only available at the 6- and 12-o’clock positions.∗ At each position,
there is a pair of contacts for each of the 48 V and 24 V supplies, four contacts for the 10 Mb/s
Ethernet connection, and two contacts for an analog clamps-closed signal (described below).

1.1.2 Swingarm

The swingarm, mounted on the inner drum, is driven by two Exlar GSX40 linear actua-
tors, called Arm A and Arm B. These actuators have incremental encoders with resolution
approximately 0.31µ and backlash ≈ 60µ. They are supplemented by Renishaw LA-11 ab-
solute encoders with resolution 0.24µ. The absolute encoders are mainly provided for an
independent safety system (chapter 8) to continuously verify that the swingarm actuators
are remaining in sync at all times, but are also used to initialize the incremental encoders.

The swingarm uses three canoe spheres that set into matching V-blocks for accurate
positioning when the swingarm is deployed for use with Nasmyth and bent-Cass instruments.
Normal canoe spheres are used where the swingarm rests in the bipod weldments. The third
canoe sphere, located at the swingarm hinge, is split into two halves — one on each side
of the pivot. The swingarm’s hinge has a substantial amount of compliance, so that the
hinge pivot places no force on the swingarm when it is resting in its neutral position in the
V-blocks (figs 1.4 and 1.5).

Figure 1.4: One of the swingarm’s canoe spheres

∗Full slip rings were evaluated, but deemed too costly.

9

CHAPTER 1. OVERVIEW ver 3.7b

When the swingarm is operated, the two actuators must stay in close alignment. This
is achieved by configuring the control system to slave Arm B to track the instantaneously-
commanded position of Arm A. To deploy the swingarm into the V-blocks, Arm A is com-
manded to move quickly until it is about 12 mm away from the V-block position, at which
point it changes to a slow speed that will not cause damage as the spheres engage with
the V-blocks. At the initial contact with the V-blocks, the compliant hinge is bearing a
significant load, and the actuators continue to extend about 1 mm further to transfer the
load entirely to the canoe spheres. The actuators have internal hard stops that have been
adjusted so that they are only about 1 mm beyond the neutral point in the V-blocks. If the
actuators were to somehow drive past the neutral point, they will hit the hard stops before
damage occurs to the swingarm itself.

The swingarm is held in the V-blocks by four clamps (fig 1.6), each driven by a Bimba air
cylinder. Clamps A and B clamp the corresponding actuators at the bipod V-blocks/canoe
spheres; clamps C1 and C2 clamp the two halves of the hinge V-block/canoe sphere. Nor-
mally, the swingarm will not move unless the clamps indicate full-open, and the drum will
not rotate unless it can confirm that the clamps are closed (the clamps are never closed unless
the swingarm is in the V-blocks). Each clamp has a limit switch to indicate the fully-open
position, which is monitored by the swingarm subsytem. A separate analog signal indicates
which clamps are closed, and this is monitored by the drum subsystem, not the swingarm
subsystem. This signal is only available when the drum is at one of the instrument positions,
where there are contacts to electrically connect the inner and outer drums. When closed,
each clamp produces a different analog voltage: clamps {A,B,C1,C2} generate signals of
{1, 2, 4, 8} × 660mV , respectively. The analog voltages are summed together to produce a
single analog value that is decoded by the drum subsystem.

In the full-retracted position, the swingarm is secured by a dock mechanism that is
mounted on the tertiary tower (fig 1.7). The purpose of the docking mechanism is to
provide extra security in the event of a large earthquake. The swingarm has a tang that
enters the docking mechanism, whereupon the dock controller drives a docking pin through
a hole in the tang. The pin is driven by a Bimba air cylinder, and has limit switches to
indicate the retracted and engaged positions. In normal operation, the swingarm will not
move unless the docking mechanism indicates “Disengaged.” A special engineering version
of the control software (see section 2.3) allows the swingarm to be controlled without regard
to the dock position.

The swingarm moves at a slow speed when approaching the fully-retracted position, just
as it does when engaging the V-blocks. At both ends, the “slow” region is 40,000 motor
encoder counts wide, and the slow speed is 3000 motor encoder counts/sec, so it takes about
13 seconds to move through a slow region. The “fast” region in between is 319,200 motor
encoder counts wide, and the fast speed is 25,000 motor encoder counts/sec, so it also takes
about 13 seconds to move through the fast region.∗ Typical move times are listed in the
table in Appendix A.5.

In normal on-telescope operations, the swingarm is either in the Deploy position (for
Nasmyth instruments), or the Retract position (Cassegrain instruments). When stored on
the handling cart, the swingarm is normally left in the Deploy position. It is moved to

∗The width of 40,000 counts is far larger than required for safe operation. It was initially chosen because
it was considered just large enough for a staff member with a hand paddle to press the E-Stop button if
the swingarm was not going to stop on its own. Now that the safety system has been thoroughly proven, it
would be safe to narrow the regions to about 10,000 counts, which would save about 10 seconds per deploy
or retract.

10

ver 3.7b 1.1. ACTIVE COMPONENTS OF K1DM3

Figure 1.5: The “split” V-block at the swingarm hinge, with its two clamps open (upper),
and a side view of an actuator.

Mirror90, meaning the mirror is at 90◦ from the X-Y plane, for mirror removal/mounting.
There are also two additional named swingarm positions, to help applications recognize
important deviations from the nominal positions: Deployed,Unclamped is used to indicate
that the swingarm is correctly positioned in the V-blocks, but one or more clamps is not

11

CHAPTER 1. OVERVIEW ver 3.7b

Figure 1.6: Clamp closed on swingarm (left), and clamp open (right).

Figure 1.7: The docking tang (left), and the tang about to enter the dock slot (right).

closed. NotFullyDeployedButClamped is used to indicate that the swingarm is not within
tolerance of the full in-V-block Deploy position, but the clamps are closed.

As noted above, swingarm retraction is only done with the drum at the mirror-facing-
down orientation. Furthermore, the swingarm is not permitted to be released from the
clamps unless the telescope elevation is in the range 45◦ – 75◦. If the clamps were to open
when the module is too close to horizontal, the compliant hinge would allow the swingarm to
rotate (fall) several degrees under gravity before the compliance is used up and the swingarm
would come to an abrupt stop. When the module is pointed at zenith, sag in the system
prevents the docking mechanism from engaging.∗

Swingarm deployment is also affected by the compliance in the hinge. When the telescope
is at a very low elevation, moving the swingarm actuators to the normal deploy position
doesn’t actually move the swingarm all the way into the V-blocks, and therefore the clamps
can’t engage properly. In normal observing operations, the swingarm is only deployed
when the telescope is at 67◦. The same elevation is used for all mirror deployments to
minimize variation of the swingarm position as it sets in the V-blocks. The value of 67◦ was
chosen because it minimizes the average telescope elevation travel time for typical observing
targets.†

∗When retracting the swingarm, the sequencer will wait up to EL MAXWAIT seconds for the telescope
elevation to be in the range 45◦–75, else it aborts the requested move. The upper angle is user-selectable,
and stored in the writable keyword EL RETRACT.
†The actual deployment elevation is user-selectable, and stored in the writable keyword EL DEPLOY. How-

ever, the swingarm’s positioning repeatability has not been characterized any elevation other than 67◦, which
should be used for all science observations. As with retraction, the sequencer will wait up to EL MAXWAIT

seconds for the elevation to reach this position, else it aborts the requested move.

12

ver 3.7b 1.2. POSITION SUMMARY

The compliance in the hinge restricts safe rotation conditions as well as safe retraction
conditions. The basic rule is that rotation is forbidden whenever the swingarm is not
clamped in the V-blocks.

1.2 Position Summary

K1DM3 can be commanded to the following named positions:

• Instrument Positions: LNas, RNas, LBC1, RBC1, LBC2, RBC2. In each of these po-
sitions, the swingarm is deployed and clamped in the V-blocks, and rotated to the
corresponding instrument position.

Drum rotation among the above positions and/or the Stow position can be done at any
telescope elevation. If the module is starting at the Cassegrain (swingarm retracted)
position, the telescope elevation should be 67◦ for deployment.

• Instrument Position: Cass. In the Cassegrain position, the swingarm is retracted out
of the light path.

When retracting the swingarm, the telescope elevation should be in the range 45◦–75◦.

• Supplementary position: Stowed. The Stowed position is with the mirror deployed
and clamped in the V-blocks, facing downwards. This is the same drum orientation
that is used for retracting and deploying the swingarm.

When moving to Stowed from the Cassegrain position, the telescope elevation should
be 67◦. Otherwise, moving to Stowed can be done at any telescope elevation.

• Supplementary positions: MirrorUp, Mirror90. These positions are intended for use
on the handling cart. The MirrorUp position also has the mirror deployed and clamped
in the V-blocks, but the drum is rotated 180 degrees from the mirror-down position.
The Mirror90 position is for use on the handling cart: the mirror is facing up and is
horizontal, suitable for removing the mirror for re-coating.

The MirrorUp and Mirror90 positions are unbalanced against gravity, and the soft-
ware will reject requests to move to these positions unless the outer and inner drums
are pinned together.

In normal use, the above named positions are the only positions to which the module
is sent. For engineering purposes, however, the drum and swingarm can be commanded to
any position in their range of motion.

1.3 Motion Controllers

As noted in the previous section K1DM3 is conceptually simple. The module has just three
motors and seven solenoid-controlled devices, which in principle could have been operated
with a single multi-axis Galil controller. The actual system uses four Galil controllers, which
is primarily due to unique issues of this system.

First, there is very limited room for routing cables between the fixed outer drum and the
rotating inner drum that carries the swingarm, so that it is impractical to route dozens of
motor power, encoder signals, solenoid controls and limit signals. Instead, a Galil DMC-4040

13

CHAPTER 1. OVERVIEW ver 3.7b

is mounted on the inner drum, and only power and a network cable are needed to connect
them. In addition to the Galil control, one analog signal is provided for the outer drum to
directly monitor whether the swingarm is clamped in the V-blocks. The tradeoff is that the
Galil must be powered down at the end of every move, so that it doesn’t continuously dump
∼5W of heat into the light path.

Second, system safety considerations (see chapter 8) led us to implement an independent,
standalone, swingarm safety system (SASS) which runs on its own Galil RIO-47142, also
mounted on the inner drum. The SASS reads the swingarm’s Renishaw absolute encoders,
and triggers the swingarm DMC-4040’s Abort and Electronic LockOut (ELO) signals if the
arms get out of sync, or if they are moving too fast as they reach end of travel. By using
a standalone system running a small program (< 100 lines of Galil code), we gain high
confidence that the safety system will execute correctly.

The complete set of controllers is as follows:

• Drum rotation is controlled by a Galil DMC-4040 that is mounted in the electronics
box, beneath the primary mirror. This Galil is also responsible for controlling the air
supply and power supply to the swingarm.

• The swingarm assembly, with two linear actuators and four clamps, is controlled by a
Galil DMC-4040 that is mounted inside the inner drum.

• The swingarm safety system runs on a Galil RIO-47142, mounted on the inner drum.

• The swingarm’s docking mechanism, mounted on the tertiary tower, is controlled by
another Galil RIO-47142, installed in the electronics box below the primary mirror.
(The dock was added late in the K1DM3 development cycle, long after the other elec-
tronics had been designed and built. It would have been costly and caused a significant
schedule delay to have modified the existing electronics and cabling to accommodate
the dock signals, whereas adding an additional Galil RIO was straightforward.)

The network connections between the motion controllers and the wider WMKO network
are discussed in Section 1.5.

1.4 Software

1.4.1 Back-end Services

Each of the drum, swingarm, and dock controllers is managed by a separate instance of
galildisp, an application for operating Galil controllers; their individual behaviors are set by
configuration files, plus some custom code as needed. These dispatchers collectively make
up the k1dm3 KTL service, which provides all control for the K1DM3 mechanisms.

The safety system Galil carries out its function in a fully standalone manner — no exter-
nal software daemon is needed for it to operate correctly. It sends safety status information
plus the swingarm actuators’ absolute encoder values to a UDP port on the instrument host,
so that this information can be available to other clients.

The K1DM3 software includes these KTL services:

• k1dm3. This is the primary service for K1DM3, and provides all control for the K1DM3
mechanisms. There is a separate dispatcher daemon for each of the drum, swingarm,
and dock Galil’s, with each dispatcher serving part of the k1dm3 keywords.

14

ver 3.7b 1.5. K1DM3 PRIVATE NETWORK

• k1dm3saf. This service monitors the the information sent by the safety system Galil RIO
to the instrument host, and provides two functions: First, it makes the safety system
status visible to KTL clients. Second, because the safety system reads the absolute
encoders mounted on the swingarm actuators, it is used to initialize the swingarm
actuators’ incremental encoders each time the swingarm is activated.

• k1dm3mon. This service uses the emir application to provide a supplementary K1DM3
system monitor. It raises alerts under a variety of circumstances (e.g. a motor staying
on for over 3 minutes is probably generating unwanted heat), and will also try to take
safety actions that are beyond the scope of the k1dm3 dispatchers (e.g. command the
air supply to disengage if the detent is detected prematurely disengaging).

1.4.2 End-User Applications

Users primarily interact with K1DM3 through a control row in Tcsgui. There are also two
K1DM3-specific applications: the engineering gui, k1dm3 gui, and a gui that displays the
status of the supplementary k1dm3mon monitor service.

1.5 K1DM3 Private Network

As shown in figure 1.8, the instrument host, k1dm3server, connects to all the controlled
components via a Ubiquiti EdgeRouter X in the electronics box. The 5 ports on the Edge-
Router X are configured as a simple switch.

The K1DM3 networked components use the private network 192.168.23.0/24.
The drum control Galil DMC-4040 and the dock control RIO-47142 are both inside

the E-box, and are directly connnected to the EdgeRouter X. The swingarm control Galil
DMC-4040 is mounted on the inner drum, and is connected to the Ubiquiti via a network
cable that goes across the brush contacts. These brush contacts are not defined by any
network standard, of course. They were verified through extensive testing to give trouble-
free communications at 10 Mb/s, and communications with the inner drum are therefore
locked down at 10Mb/s to ensure robust communications. The swingarm DMC-4040’s two
network ports act as a mini-switch, and the safety RIO-47142 is connected to the network
by daisy-chaining through the second port on the DMC-4040.

The instrument host is dual-homed, with one interface (enp3s0f0) on the Keck opera-
tions network and the other interface (enp3s0f1) on the K1DM3 private network.

The full set of K1DM3 network addresses are listed in Appendix A.

15

CHAPTER 1. OVERVIEW ver 3.7b

Figure 1.8: Network connections for K1DM3 Components. The Ubiquiti ER-X SFP is
configured as a switch. The instrument host is connected to the blue line labelled “Keck
Ethernet,” which is on the VLAN 192.168.23.0/24.

16

Chapter 2

Starting, Stopping, Suspending
Services

2.1 Starting/Stopping

K1DM3 services are normally started and stopped using the master command $RELDIR/bin/k1dm3

on the instrument host, k1dm3server. The k1dm3 command can be run by any account be-
longing to the instr, k1dm3, or tcs Unix groups, and it will always start services as the
k1dm3run user. Invoked with no arguments (or with -h) you will see a list of choices like so:

Use:

k1dm3 [opts] [help|start|restart|stop|status|pid|config] subsystem...

where

Subsystem Description Invokes

----------- ----------- ---------------

motioncontrollers Motion control daemons drum, dock, swingarm

dispatchers or daemons All K1DM3 dispatchers rotate, dock,

swingarm, safety,

monitors

swingarm, disp1 or dmc1 DMC-40x0 (swingarm) k1dm3_dmc1

rotate, drum, disp2 or dmc2 DMC-40x0 (rotation) k1dm3_dmc2

dock or disp3 RIO (dock) k1dm3_dock

safety or k1dm3saf K1DM3 Safety System RIO k1dm3saf_rio

monitors Monitor daemons k1dm3mon1, k1dm3mon2

k1dm3mon1 or monitor1 K1DM3 Main Monitor k1dm3mon1.sh

k1dm3mon2 or monitor2 K1DM3 Heartbeat Monitor k1dm3mon2.sh

k1dm3history or keygrabber K1DM3 keyword history k1dm3history(*)

* = runs on: vm-history-1.keck.hawaii.edu

Example 1. You can check the run status by using:

k1dm3 status

17

CHAPTER 2. STARTING, STOPPING, SUSPENDING SERVICES ver 3.7b

Example 2. You can start all dispatchers using:

k1dm3 start dispatchers

Example 3. You can restart just the swingarm dispatcher using:

k1dm3 restart swingarm or
k1dm3 restart dmc1

The dispatchers will not start correctly if the corresponding Galil is not online.∗ The
start/stop script rejects attempts to start or stop the dispatcher if the Galil is not pingable
(stopping the dispatcher is rejected on the assumption that your next action will be to
restart it). You can override the rejection by appending “@” to the action to get an alternate
version, e.g.

k1dm3 restart@ swingarm or
k1dm3 stop@ swingarm

The alternate versions for all drum and dock actions simply skip the ping check. The
alternate version for starting the swingarm dispatcher is much more extensive. If the drum
Galil is pingable, the startup sequence will unsuspend the drum dispatcher if it’s suspended,
turn on 24V power to the swingarm Galil if it’s off, start the swingarm dispatcher, and finally
restore the 24V power and drum dispatcher status to their prior state.

A second alternate version, run by appending “@@” to the action, adds another layer of
smarts. It automatically selects between the normal and alt versions, depending on whether
the target Galil is pingable. It is provided for use by applications such as the engineering
gui (see its Restart menu, in section 5.2) that need a simple way to automatically invoke
the “best” way to restart a dispatcher.

The rotation and dock dispatchers can be started about 60 seconds after the E-box power
has been turned on, which allows time for the switch inside the E-box to boot up.

The swingarm dispatcher requires more care to start. The Galil will be pingable about
2-3 seconds after the inner drum’s 24V supply is connected and on. Power to the inner
drum is only available when the drum is at the 6- or 12-o’clock position, and is controlled
by the rotation dispatcher’s INNER24V keyword. Therefore the rotation dispatcher must be
running and the drum homed so that the dispatcher knows the drum position. These steps
are handled by the alternate swingarm startup version.

Each of the names listed under “Invokes,” above, is a SysV-style start/stop script, which
are found in the directory $RELDIR/etc/init.d/. The start/stop scripts are:

k1dm3 dmc1. Dispatcher #1 for service k1dm3. Controls the Galil DMC-4040 that
operates the inner drum (swingarm).

k1dm3 dmc2. Dispatcher #2 for service k1dm3. Controls the Galil DMC-4040 that
operates the rotation mechanism and hand paddle.

k1dm3 dock. Dispatcher #3 for service k1dm3. Controls the Galil RIO-47142 that
operates the swingarm dock mechanism.

k1dm3saf rio. Dispatcher for service k1dm3saf. Monitors the standalone Swingarm
Safety System Galil RIO-47142.

k1dm3mon1.sh. Primary dispatcher for service k1dm3mon. Monitors k1dm3 and raises
alarms.

∗Exception: the swingarm safety service can be started regardless of the state of the safety Galil.

18

ver 3.7b 2.2. SUSPENDING DISPATCHERS

k1dm3mon2.sh. Dispatcher to monitor heartbeak keywords for service k1dm3mon.
k1dm3history. This controls a keygrabber instance (Lanclos and Deich, 2012) that keeps

a complete history of keywords from the above K1DM3 services. At this writing,
this service runs on the host vm-history-1.

The master start/stop command is a small shell script that invokes the general-purpose
master script $RELDIR/etc/init.d/lickStartStop with the K1DM3-specific configuration
file $RELDIR/data/K1DM3/init/lickStartStop.conf. Each of the individual dispatcher
start/stop commands is a small shell script that invokes the general-purpose SysV script
$RELDIR/etc/init.d/lickSysV, driven by the configuration file
$RELDIR/data/K1DM3/init/std script.conf.

2.2 Suspending Dispatchers

Historically, the dispatchers have regarded a non-responsive Galil as a severe error. How-
ever, K1DM3 operations require the swingarm Galil DMC-4040 to be powered off at all
times except when actively using the swingarm. To support this, the dispatchers can be
commanded to enter a special “suspended” state, using the keyword DISPx SUSP (here, x
is the dispatcher number). In the suspended state, the dispatcher will do little more than
wait to be un-suspended, and most show and modify commands will fail with the error
“Dispatcher operations are suspended.”

During K1DM3 development, it was common for the technical staff to casually shut off
power to the control electronics without first suspending the dispatchers. To manage this
situation gracefully, the galildisp dispatcher has been modified to “auto-suspend” itself if
the Galil becomes non-pingable. While auto-suspended, the dispatcher will ping the Galil
occasionally, and when the Galil responds to the ping, the dispatcher will reconnect and
auto-unsuspend.

If you are going to shut off power to the entire electronics box — say, to remove it from
the tower — it is recommended that you first suspend the dispatchers. The recommended
method is to use the ACTIVATE keyword, which configures the system for different modes of
use:

modify -s k1dm3 ACTIVATE=Transport

In the transport setting, the system is ready for transport in or out of the tertiary tower. In
addition to suspending the dispatchers, the ACTIVATE sequencer will verify that the clamps
are closed, the detent is engaged, the drum is oriented to Cass/Stow, the drums are pinned
together, and all power supplies are off (except for the 120V supply to the electronics box
itself).

2.3 Special No-Dock Engineering Version

In all normal operations, the swingarm assembly (section 3.3) — which is composed of the
two swingarm actuators, the clamps subassembly, and the dock mechanism — commands
the docking mechanism to open before commanding any actuator motion, and the actuator
components refuse to move whenever the dock signal isn’t “Disengaged”; this cannot be
overridden with an ordinary safety bypass.

19

CHAPTER 2. STARTING, STOPPING, SUSPENDING SERVICES ver 3.7b

We found that during installation of the dock, it was necessary to be able to move
the swingarm regardless of the dock state, and therefore we provided a special engineering
version of the control software that allows the swingarm to be operated without regard to
the dock mechanism: the dock mechanism is not included in the Swingarm assembly (so
that problems with the dock will not be inherited by the Swingarm); the Swingarm will not
command the dock mechanism; and the swingarm actuators will pay no attention to the
state of the dock.

The dock dispatcher itself is entirely unaffected by this change, and you can monitor
and command the mechanism using the normal DOCKxxx keywords.

⇒ In the swingarm-without-dock engineering version, all safe movement of
the swingarm at the dock depends on personnel taking care to command the
swingarm only when the dock mechanism is not in the way. There is no software
safety.
⇒ The keyword WITHDOCK is true (false) if the swingarm assembly is (is not)

configured to monitor and control the dock mechanism.

The following steps are required to remove the dock mechanism from Swingarm monitor
and control:

1. Go to svn/kroot/kss/K1DM3/k1dm3/configs

2. Edit Mk.dockoption, and set WITHDOCK=
(That is, set WITHDOCK to the empty string.)

3. Do: make install, kdeploy

4. Restart the rotation dispatcher: k1dm3 restart rotate

To restore the dock mechanism to normal Swingarm monitor and control, use similar
steps as above, except set WITHDOCK=1:

1. Go to svn/kroot/kss/K1DM3/k1dm3/configs

2. Edit Mk.dockoption, and set WITHDOCK=1.

3. Do: make install, kdeploy

4. Restart the rotation dispatcher: k1dm3 restart rotate

2.4 Periodic Restarts

The K1DM3 galildisp instances have a memory leak, whose cause remains unknown. We
recommend restarting the dispatchers monthly. Take care to restart the swingarm dispatcher
only when the module is at the Cass/Stow or Retract positions:

1. k1dm3 restart drum (Wait 5 seconds)

2. k1dm3 restart dock (Wait 5 seconds)

3. k1dm3 restart@@ swingarm

20

Chapter 3

Components, Assemblies, and
Sequencers

This section discusses how the k1dm3 KTL service’s basic components are combined in
software into higher-level assemblies and controlled via sequencers.

Galildisp provides several kinds of elementary components for device control: (a) basic
digital I/O bits; (b) simple digital stages that are controlled and monitored by a small group
of I/O bits; and (c) motor stages.

Galildisp also provides compound keywords, which are keywords whose values are com-
posed of other keywords and/or I/O values, and assemblies, which are logical stages com-
posed of other stages and/or sub-assemblies.

3.1 Elementary Components

The three elementary components for device control are:

Simple I/O A simple digital I/O component generally has just one keyword associated
with it, showing its current value. A simple analog input component will often have
two keywords: one keyword will show the “raw” voltage read by the Galil, and a
second keyword to show the value after conversion to a physically meaningful value:
perhaps a temperature, or a power supply voltage, etc.

Digi-stage A “digital” stage, or just digi-stage, is controlled and monitored by a collection
of I/O bits. For example, a solenoid-driven actuator might have two inputs from limit
switches that indicate the actuator is in the open or closed position, and might have
one output bit to select the direction of motion, and another to send a pulse to the
solenoid.

A digi-stage has a standard set of 15-20 keywords, depending on configuration options.
Each standard keyword has a name of the form stage XXX, where stage is the name
of the stage, and XXX is a 3-letter standard suffix, such as POS for position, or XMV

for “can’t-move” reasons. See section 12.3 for a complete listing of k1dm3 ’s digi-stage
keywords.

21

CHAPTER 3. COMPONENTS, ASSEMBLIES, AND SEQUENCERS ver 3.7b

Motor stage A motor stage is a Galil controller’s bread-and-butter. Each motor stage has
a set of 50–65 keywords, with the exact number depending on the stage configura-
tion. As with digi-stages, each motor keyword has a name of the form stageXXX. See
section 12.4 for a complete listing of k1dm3 ’s motor keywords.

3.2 Compound Keywords

Compound keywords are defined in terms of other keywords, plus they can directly use
digital and analog I/O levels. For writable compound keywords, the “modify” rules can
either be one or more modify commands embedded in the KTL service configuration files,
or they can be implemented as Tcl procedures, following the standard galildisp modify-API.
Of particular note, galildisp includes a modify procedure that provides a robust interface
to external scripts acting as sequencers (section 3.4), enabling complex sequencers to be
readily triggered from the configuration data.

An example of a simple compound keyword is PINNED. This is a mask keyword with
fields CART and DRUMS, which show the combined state of the input bits CART PINNED and
DRUMS PINNED.

Compound keywords can be arbitrarily complex. For example, the ACTIVATE compound
keyword implements the sequencing necessary to alternate between swingarm motion and
drum rotation. These long, involved sequencer scripts are invoked as modify procedures
from the keyword configuration.

3.3 Assemblies

Galildisp groups individually-controlled components into assemblies. An assembly is a soft-
ware grouping of elementary components and/or other sub-assemblies. The assembly layer
adds a set of keywords that treat the components as a single logical device. As with com-
pound keywords, the “modify” rules for assemblies can either be one or more modify com-
mands embedded in the KTL service configuration files, or they can be implemented as
external scripts (sequencers), enabling arbitrarily complex rules.

Galildisp provides support for several kinds of assemblies. Broadly speaking, an assembly
either acts like a digi-stage or a motor stage.

K1DM3 has these core assemblies:

• CLAMPS. The four swingarm clamps are almost always operated as a unit, using the
CLAMPSPOS keyword to open or close the clamps. The CLAMPS assembly is made up
of the four actual clamps, each of which is implemented as a digi-stage. The four
digi-stages are CLAMP A and CLAMP B, which clamp the swingarm at the bipod weld-
ment; and CLAMP C1 and CLAMP C2, which clamp the swingarm at the hinge. When
commanding the clamps, we usually want to command A and B simultaneously, and
C1 and C2 simultaneously, which can’t quite be achieved using the separate digi-
stage keywords. The k1dm3 service provides custom code, accessed by the compound
keywords CLAMP AB and CLAMP C1C2, each of which issues Galil commands to operate
a pair of clamps simultaneously. The CLAMPS assembly uses those custom keywords
instead of the individual digi-stage keywords.

• SWINGARM. The SWINGARM is composed of the two swingarm actuators (ARM A and
ARM B) the clamps (the CLAMPS assembly), and the docking mechanism (the DOCK

22

ver 3.7b 3.4. SEQUENCERS

digi-stage). Although both actuators’ keywords are part of the Swingarm assembly, in
practice Actuator B is normally slaved to Actuator A, and is not directly commanded,
except when tweaking the alignment between the two actuators.

• DRUM. The DRUM assembly is made up of the air supply mechanism (the AIRSUPP digi-
stage), the detent mechanism (the DETENT digi-stage), and the rotation drive (the
ROTAT stage).

An additional assembly, M3MAN, is provided as a helper for implementing the manual
controls. Its components are the DRUM and SWINGARM assemblies. The hand paddle inputs
are processed by this assembly, which simply invokes the general-purpose M3AGENT sequencer
keyword (see below) to execute the appropriate command.

3.4 Sequencers

K1DM3’s components must always be operated in specific and strict sequences, lest serious
damage occur to the system. This is quite different from typical science instruments, in
which components can usually be operated independently of one another without conflicts.

K1DM3 uses sequencers to simplify the work for users, along with sequencer keywords to
trigger the actions. A sequencer is piece of software that that implements all the necessary
keyword commands, in the correct order, to carry out a desired action. Simple assemblies’
modify commands are a kind of sequencer, although we don’t usually refer to them that way.
In galildisp, a sequencer is usually an external program and is executed as the sequencer
keyword’s “modify” action. Unlike ordinary, standalone scripts, however, a sequencer script
acts as an integral part of the dispatcher.

Sequencers are particularly important to k1dm3 because moving between positions in-
volves many high-level decisions and sequencing, all of which has to be presented to DCS
as a single simple move. For example, when the dcs1 TERTMOVEC keyword demands a move
from the LNas position to the Cass position, it is handled by k1dm3 ’s TERTMOVEC sequencer
keyword (see figure 4.1 on page 30), which invokes a script that does the following steps:

1. Move the drum: disengage the drum’s detent mechanism, rotate to the Cass drum
position, engage the detent, and shut off the 48V rotation power.

2. Activate the swingarm subsystem: connect the inner drum air supply, turn on the 24V
and 48V power supplies to the swingarm, unsuspend the swingarm and dock dispatch-
ers, initialize the swingarm actuators’ motor encoders from the absolute encoders, open
the swingarm clamps, and initialize the actuators’ brushless motors.

3. Move the swingarm: open the swingarm clamps, ensure the dock pin is retracted, move
quickly to nearly the retracted (Cass) position, move slowly into the dock position,
and engage the dock pin.

4. Switch to “observing” configuration: Suspend the swingarm and dock dispatchers,
shut off the 48V and 24V power supplies, and double-check that the rotation power is
off.

The K1DM3 sequencer scripts are implemented as bash scripts, although, since they
are external programs, they can be implemented in any language, whether script or com-
piled program. A sequencer program normally communicates with the dispatcher us-
ing simple text commands over its standard input and output channels, instead of using

23

CHAPTER 3. COMPONENTS, ASSEMBLIES, AND SEQUENCERS ver 3.7b

the standard KTL client keyword library. All K1DM3 sequencer scripts are installed in
$RELDIR/sbin/k1dm3/.

Sequencer programs have several advantages over standalone external scripts:

• The dispatcher knows that the executing program is part of a particular modify com-
mand, and can manage it as an integrated part of the dispatcher.

• If the modify command times out, the dispatcher will signal the sequencer and its child
processes, if any. (The dispatcher starts the program as a new Unix process group, so
it is trivial to signal the entire collection of processes.)

• If the in-progress modify command needs to be cancelled, the dispatcher will signal
the sequencer’s process group.

• A sequencer script can invoke modify commands, call dispatcher procedures, set any
keyword value, and returns a success or failure code exactly as is done by an internal
modify routine.

• When the dispatcher executes a command that is triggered from a manual control
configuration, the command executes in a “manual context,” meaning that it won’t
be locked out along with normal keyword modify’s from client applications. The
manual context is inherited by every subsequent command triggered by that initial
manual command, including other sequencer scripts and the modify commands that
they in turn execute,∗ and therefore arbitrarily complex commands can execute on
behalf of a manual input.

• Lastly, the dispatcher is usually configured to copy the standard output from a se-
quencer script into an associated string keyword, which provides a simple yet valuable
means of tracking the progress of a large sequencer script.

3.5 The ACTIVATE Sequencer

The K1DM3 module’s design imposes constraints so that rotation and swingarm motion
cannot occur simultaneously. K1DM3 provides the ACTIVATE sequencer keyword to put
the module into the correct configuration for operating the swingarm, rotating the drum,
observing, or transport the module between tertiary tower and handling cart.

The ACTIVATE sequencer takes actions, as needed, to put the module into the requested
configuration: suspend or un-suspend dispatchers; adjust control modes; turn on or off power
supplies; engage or disengage the detent and air supply mechanisms; open the clamps if
needed to initialize the swingarm; initialize the swingarm. However, the ACTIVATE sequencer
does not move the drum or swingarm, except for the ∼ 250µm required to initialize the
swingarm.

The ACTIVATE definitions implements a set of best practices: not every operation is
required for the dispatchers to permit motion, but they are all desirable during normal
operations — for example, all sources of heat should be turned off during observations.
Thus, even if the ACTIVATE keyword’s value isn’t Swingarm, it is often possible to operate

∗A sequencer application has to use galildisp’s special “internal modify” method in order for the manual
context to be passed through the sequencer to its own modify commands. If the sequencer uses the ordinary
modify shell command, it will not run in a manual context.

24

ver 3.7b 3.5. THE ACTIVATE SEQUENCER

the Swingarm. (Section 6.2 gives the minimum conditions for operating the drum and
swingarm.)

The full set of ACTIVATE values is:

• ACTIVATE=Swingarm. In this configuration, k1dm3 is able to move the swingarm. In
normal operations, the basic conditions for swingarm operation are that the drum is
initialized, the detent is engaged, and the position is either MirrorUp or Cass/Stow.
If the position is MirrorUp, the inner and outer drums must be pinned together; if
Cass/Stow, the module must be in the tower and the elevation must be at least 45◦.

The ACTIVATE keyword will indicate that the module is in the Swingarm configuration
only when a much more extensive set of conditions is true, which collectively indicate
that the rotation controls are powered down (and therefore not generating waste heat),
and the SWINGARM software assembly is ready to move without further ado:

– all dispatchers are in the Ready state;

– the inner drum 24V power supply is on;

– the detent mechanism is engaged;

– the rotation motor is off;

– the rotation power supply is off;

– the inner drum air supply is connected;

– the docking pin is disengaged;

– the swingarm control mode is Pos;

– the swingarm actuators are slaved together;

– the brushless motors’ sine amplifiers are initialized;

– the actuators are calibrated.

Setting ACTIVATE=Swingarm executes all of the commands to do the above, if the
drum is already in the Stow or MirrorUp positions. The sequencer script for this
configuration is activate.swingarm.

• ACTIVATE=Swingarm/noinit. This configuration means that the SWINGARM software
assembly has taken all steps to prepare for motion, except that the actuators aren’t
initialized. This is useful from time to time for some engineering purposes. For exam-
ple, you may need to interact with the swingarm, but the module is in an orientation
that doesn’t allow the clamps to be opened. The sequencer script for this configuration
is activate.swingarm.

• ACTIVATE=Rotate. This configuration means that the drum is ready for rotation.
Power to the inner drum is shut off before motion, because the power goes through
contacts that are only live at at the 6- and 12-o’clock drum positions. The Rotate

mode means:

– the air supply is disengaged from the inner drum;

– the inner drum dispatcher (dispatcher 1) is Suspended;

– the other dispatchers are Ready;

– the inner drum 24V and 48V power supplies are off;

25

CHAPTER 3. COMPONENTS, ASSEMBLIES, AND SEQUENCERS ver 3.7b

– the swingarm is deployed and the clamps are closed;

– the outer drum (rotation power) 48V supply is on;

– the rotation control mode is Pos.

Setting ACTIVATE=Rotate executes the commands to do the above, if the swingarm
is in already deployed and clamped. The sequencer script for this configuration is
activate.rotate.

The sequencer does not deploy the swingarm into the V-blocks if it is not already
there, nor will it close the clamps if the swingarm is in the V-blocks but the clamps are
open. (The sequencer is allowed to open the clamps as a normal part of transitioning to
Swingarm mode. However, the deployed-but-unclamped position is sufficiently unusual
that we do not let the sequencer automatically close the clamps, but instead require
the clamps to be closed from outside of the ACTIVATE sequencer.)

If the swingarm dispatcher is not yet suspended when the ACTIVATE sequencer executes
Rotate mode, the sequencer will turn off the swingarm motors and put the swingarm
mode to Halt before suspending the swingarm dispatcher. If the swingarm is already
suspended, the sequencer will disregard the swingarm motor settings.

• ACTIVATE=Observe. This configuration implements the recommended settings for sci-
ence work:

– the drum’s ordinal position must be positive (this implies that

– the drum is positioned at one of its named ordinal positions);

– the detent must be engaged;

– the air supply is disengaged;

– the inner drum power supplies are off;

– the rotation motor power is off;

– the inner drum dispatcher is suspended;

– the swingarm is either at the Retract position, or it is deployed and clamped.

The sequencer will command all the above as needed (excluding any drum rotation, of
course), including closing the clamps if the swingarm is in the Deployed,Unclamped

state. (This is at odds with the rule for activating Rotate mode, which won’t close
the clamps. I don’t have an explanation for the difference. (Sorry).) The sequencer
script for this configuration is activate.observe.

• ACTIVATE=Transport. This configuration is the setting recommended for moving the
K1DM3 module in and out of the tertiary tower. All dispatchers are suspended; all
power is off; the air supply mechanism is disengaged; the detent mechanism is engaged;
the drum rotation position is MirrorUp; and the drums are pinned together.

The sequencer will command all the above as needed, excluding any drum rotation
and, of course, pinning the drums together is a hand operation. The sequencer script
for this configuration is activate.transport.

26

ver 3.7b 3.6. THE M3AGENT SEQUENCER

3.6 The M3AGENT Sequencer

The M3AGENT keyword (section 4.2) unifies all three methods of controlling K1DM3 — TCS,
command line, and hand paddle. Every standard operation needed to support these is
implemented as one of the M3AGENT modify values. Its sequencer is the script m3.agent.
This script simply checks its arguments and invokes one of the specific scripts m3.halt,
m3.init, m3.stby, m3.move, m3.jog, m3.stop (Abort), m3.nmir (no-move-init-rotate), or
m3.nmie (no-move-init-encoders).

Each manual button is implemented by simply invoking M3AGENT with the correct value.
TCS controls are implemented by directly invoking the appropriate m3.xxxx sub-sequencer,

rather than invoking M3AGENT itself. By doing so, the sub-sequencer can see that it has been
invoked by one of the TERTxxx keywords, rather than M3AGENT, so it will set the appropriate
complementary TCS keyword to yes or true for the duration of the command, and then to
no or false upon completion of the command.

The M3AGENT sequencer primarily controls the module using the ACTIVATE sequencer
and the SWINGARM and DRUM assemblies. It also will directly command the power supplies
as needed (INNER24V, INNER48V, OUTER48V), recover from non-normal situations by com-
manding the AIRSUPP, CLAMPS, and DETENT digi-stages, and do a no-move-initialization by
directly commanding the ROTAT drum rotation drive.

3.7 Monitoring Sequencer Execution

It is useful to know the general sequence in which these keywords are set and cleared, so that
you can find relevant information from the keyword history, or create new GUI’s that work
well with the sequencer output. The ACTIVATE and M3AGENT sequencers have similar sets of
keywords, and the following description applies to both of them. The ACTIVATE sequencer
has keywords ACTIVRUN, ACTIVERM, and ACTIVMSG (and more); the M3AGENT sequencer has
keywords M3RUN, M3ERM, and M3MSG (and more). When these sequencers run, the following
keywords are set in the order shown below (here, xxx = {ACTIV, M3}):

Initialization before each execution of the sequencer:

• xxx RUN = true

• xxx ERM = “” (empty string)

• xxx MSG = “” (empty string)

Immediately before exec’ing the sequencer:

• xxx MSG = basename-of-sequencer : begin

• xxx MSG = full command line of exec’d sequencer

When sequencer runs:

• xxx MSG = various messages from sequencer itself

• If the sequencer finds a problem and emits an error code and error message before
exiting: xxx ERM = sequencer-provided error info

Note that the sequencer is free to generates messages and error codes in any order.

27

CHAPTER 3. COMPONENTS, ASSEMBLIES, AND SEQUENCERS ver 3.7b

When a sequencer program exits:

• If it exits with a non-zero exit status:

– xxx MSG = Error In program: program error info

– If the sequencer emitted an error code and error message before exiting, we
add a second xxx MSG entry:

– xxx MSG = sequencer-provided error info

– xxx ERM = same sequencer-provided error info

• If it exits with status = 0, but it emitted an error code and error message before
exiting:

– xxx MSG = sequencer-provided error info

– xxx ERM = same sequencer-provided error info

• If it exited with exit status = 0, and no error code or message (but possibly a
success code/message):

– xxx MSG = basename-of-sequencer : done

(Note that the done line is only emitted on success.)

xxx RUN = false

A key point is that the sequencer is running while xxx RUN keyword is true, and all
sequencer output and status have been recorded in the xxx MSG and xxx ERM keywords before
the xxx RUN keyword becomes false.

When an error occurs deep in a sequencer script, it will be logged in the xxx MSG keyword,
but that will generally followed by a sequence of other messages that overwrite the initial
problem message, making it hard for the non-expert user to see the original cause of the
problem. However, the xxx ERM keyword will generally show the problem in its last two
lines of output. A recommended way of notifying users of sequencer errors is to monitor the
xxx ERM and xxx RUN keywords. When xxx RUN goes true, clear the xxx ERM display. Then
display the most recent two lines of xxx ERM output. This will remain blank on success, but
will show the error if there is a problem.

28

Chapter 4

Dispatcher Interfaces for
Routine Operations

This section introduces the three high-level dispatcher interfaces that are used for all routine
operations of K1DM3 (the graphical user interfaces for working with K1DM3 are introduced
in chapter 5):

• TCS. Whenever K1DM3 is installed in the tertiary tower, its dispatcher monitors and
responds to TCS demands. This is the most common mode of use. As illustrated in
figure 4.1, when one of the TCS TERTxxxx keywords is set, the value is immediately
mirrored in the k1dm3 keyword of the same name. In turn, the change of the k1dm3
keyword triggers the execution of the corresponding sequencer script.

• Hand Paddle. When the hand paddle is connected, most remote control by keyword
is locked out.† The hand paddle buttons trigger motion by invoking the M3MAN
keyword,‡ which has a set of rules that invoke M3AGENT with an appropriate value
for each button combination. In this case, the M3AGENT sequencers will execute in
a “manual context” so that the dispatcher recognizes that each lower-level keyword
modify is executing on behalf of a manual command.

• M3AGENT. The sequencer keyword M3AGENT supplies an all-in-one interface for com-
manding the module (see figure 4.1). Depending on the value that is written to it,
it can invoke one of the “M3” sequencers that execute moves to any named position,
TCS demands, hand paddle commands, or a special “no-move-init” action that can
usually initialize the drum with no motion. This keyword is recommended as the
standard interface for nearly all actions carried out by scripts and GUI’s.

It is not much of an exaggeration to say that the M3AGENT keyword contains everything
one needs to know about the k1dm3 service. Both TCS and hand paddle operations

†The keywords that may be commanded remotely are those that don’t cause motion, and any xxx STP

(STOP) command.
‡An implementation detail of the galildisp dispatcher prevents associating the manual control rules di-

rectly with the “compound” keyword M3AGENT. The workaround is to create a little assembly, M3MAN,
which has the exact same set of valid positions as M3AGENT. The manual control rules are tied to the
M3MAN assembly, and whenever a manual button is pressed to direct M3MAN to some action, the M3MAN
“modify” rules simply invoke M3AGENT to carry out the action.

29

CHAPTER 4. DISPATCHER INTERFACES FOR ROUTINE OPERATIONS ver 3.7b

TERTHALTCdcs1.TERTHALTC

dcs1.TERTINITC

dcs1.TERTMOVEC

dcs1.TERTSTBYC TERTSTBYC

TERTINITC

TERTMOVEC

m3.halt

m3.agent

m3.stby

m3.init

m3.move

k1dm3 Sequencer
Keywords

k1dm3 Sequencer
Scripts

M3MAN

M3AGENT
modify

commands

(hand paddle)

(keyboard)

m3.halt

m3.stby

m3.init

m3.move

m3.jog

M3AGENT

Non-TCS Controls

TCS Keywords

m3.stop

m3.nmie

dcs1.TERTABRTC TERTABRTC

m3.nmir

Figure 4.1: High Level Control Flow

30

ver 3.7b 4.1. TCS OPERATIONS

require the module to function correctly using just a handful of simple commands.
This implies that K1DM3 has to be able to recover from a wide range of foreseeable
situations, without any assistance from technical staff. Therefore, the M3AGENT se-
quencer embeds rules to recover from a wide range of problems, especially abnormal
start conditions.

4.1 TCS Operations

K1DM3 implements the standard DCS state model, as described in KSD-46a (Lupton, 1997),
interacting with TCS through the dcs1 KTL keyword service. When in the tertiary tower,
or when the USEDCS flag is set in the engineering keyword M3ENG, K1DM3 will monitor the
TCS tertiary keywords and execute the usual Halt/Init/Stby/Move/Abort requests. (The
Abort action is not part of KSD-46a, but was retrofitted to support the new TCS execution
model. For K1DM3, Abort is the same as a simple Stop action, and is implemented by
invoking the Stop sequencer. Abort differs from Halt in that the latter explicitly leaves the
module in a ready-to-move state, whereas Abort doesn’t worry about ensuring a ready-to-
move state.)

For convenience, we reproduce the familiar state diagram, Figure 3 of KSD-46a:

FIGURE 3. Standard DCS state model

TABLE 9. Rotator command and feedback keywords used by GUIs

normal operation

TRACKINGHALTING

HALTED SLEWING

init done

START

STANDBY

INITING

FAULTED

MANUAL

start-up

fault

init

abnormal operation

standby

init

standby

init and standby

failure

init

Figure 4.2: DCS State Diagram (from KSD-46a, fig 3)

K1DM3 provides sequencer keywords TERTHALTC, TERTINITC, TERTSTBYC, TERTABRTC,
and TERTMOVEC, which are used to implement the corresponding TCS actions. The K1DM3
keywords mirror the same-name TCS tertiary keywords — that is, whenever the TCS key-
word changes, its same-name K1DM3 keyword is changed to the same value. In turn, the
“modify” procedure for the K1DM3 keyword carries out the actual action. The motivation
for this approach is to provide a clean layer of separation between TCS and K1DM3 — one
can test most of the command chain by directly modifying the K1DM3 keyword, without
needing TCS to be available.

31

CHAPTER 4. DISPATCHER INTERFACES FOR ROUTINE OPERATIONS ver 3.7b

K1DM3 invokes the corresponding sequencer keyword’s modify procedure, which com-
mand K1DM3 to carry out the desired sequence of actions, and sets the appropriate TCS re-
sult values. These modify procedures invoke sequencer scripts that are named, respectively,
m3.halt, m3.init, m3.stby, m3.stop, and m3.move, and are installed in $RELDIR/sbin/k1dm3/.

4.2 M3AGENT

M3AGENT is an enum keyword with a set of modify values that allows it to be used as a
master do-everything sequencer. Actions are started by invoking one of its modify choices:

modify -s k1dm3 M3AGENT=value

where the valid values are:

• TCS-like actions: Halt, Init, Stby, Stop

• Instrument positions: LNas, RNas, LBC1, RBC1, LBC2, RBC2, Cass

• Supplementary positions: Stowed, Mirror90, MirrorUp

• Other motions: StepPos, StepNeg, JogPos, JogNeg

• Special actions: NoMoveInitRotate, NoMoveInitEncoders, EngrTest

The M3AGENT values Halt, Init, Stby, and Stop trigger the same sequencer scripts as
used to implement TCS commands.∗ The only difference between a TCS request and using
the keyword M3AGENT is that TCS keywords TERTxxx are not set when using M3AGENT.

The position values (LNas, RNas, etc) likewise trigger the same m3.move sequencer script
that is used for the TCS TERTMOVE command, with the only difference being that TCS
keywords are not set when using M3AGENT.

The values StepPos and StepNeg implement the hand-paddle actions for commanding
the drum to step to the next instrument position, either increasing or decreasing angle.

The values JogPos and JogNeg are mainly provided for engineering purposes. They
cause the drum to rotate constantly in the direction of increasing or decreasing angle. The
rotation speed is set by the ROTATMSP (MSP = Maximum SPeed) keyword, which defaults
to 7818 Renishaw encoder counts/s (40,000 motor encoder counts/s).
Note: the ROTATMSP keyword limits the speed of any rotation, so if you set it to a low
value for some engineering task, it’s important to reset it to its maximum value for normal
operations.† The value Stop stops any motion of both drum and swingarm. It differs from
Halt because it only stops motion, but doesn’t change any modes, turn off power supplies,
etc.

The supplementary positions provide the daytime park position, and two engineering
positions: Stowed means that the swingarm is deployed and clamped in the V-blocks, facing
down (drum at the Cass/Stow orientation). MirrorUp also means that the swingarm is
deployed and clamped in the V-blocks, but it is facing up, i.e. 180 degrees from the Stowed
position. Mirror90 is the position for removing the mirror for recoating. The drum is at
the same orientation as MirrorUp, but the mirror is raised to be parallel to the ground.

∗For k1dm3, the TCS Abort command is no different from Stop, and thus TCS Abort is implemented by
simply invoking the M3AGENT Stop command.
†As a convenience, the k1dm3 KTL library allows you to use the literal string maxv for the maximum

allowed value of any int, int64, float, or double keyword, e.g. ROTATMSP=maxv.

32

ver 3.7b 4.3. HAND PADDLE

The special value NoMoveInitRotate is provided to initialize the rotator without any
motion. This is an essential part of bootstrapping the system whenever power has been
removed and the swingarm is not clamped in the V-blocks, such as after recoating the mirror,
or after a power outage when the module is in the tertiary tower in the Cass position. If
either of the limit switches at the Cass/Stow and MirrorUp (6- and 12-o’clock) positions are
active, M3AGENT will set the current encoder value to the corresponding position, and mark
the subsystem as initialized.∗ Without these switches, initialization can deadlock because
the dispatcher will refuse to move the swingarm unless the drum is in the Cass/Stow or
MirrorUp position, and the dispatcher will refuse to rotate the drum for initialization unless
the swingarm is clamped in the V-blocks.

The special value NoMoveInitEncoders extends NoMoveInitRotate to also set the swing-
arm actuators by reading the Renishaw absolute encoders and setting the actuator motor
encoders to the corresponding values. It is not essential for bootstrapping the system, but
is a useful shortcut to a setting that is needed for any engineering work with the clamps.

Finally, the engineering value EngrTest can trigger the invocation of one of three “en-
gineering” sequencer scripts. If the engineering keyword M3ENG’s value contains one of
the flags Engr1, Engr2, or Engr3, then the matching script m3.engrTest1, m3.engrTest2,
m3.engrTest3, is executed. Anything whatsoever can be placed in these test scripts, which
is helpful for development of additional or alternative M3AGENT sequences.

4.3 Hand Paddle

The K1DM3 hand paddle is a simple off-the-shelf component with 4 LED’s and 8 buttons.
Its controls operate at a high level: pressing a button generates a command to the M3AGENT

keyword. This is distinctly unlike many systems in which manual controls directly control
low level components. The exacting sequencing requirements for K1DM3 make it impractical
to expect a hand paddle user to know and follow an extensive series of low-level commands,
say to rotate the drum from the Stowed position to the MirrorUp position, and then raise
the swingarm to the Mirror90 position.

When the hand paddle is connected, external keyword commands are rejected if they
might cause any motion or turn on power, except that keyword commands to stop axes
are allowed. When a hand paddle button triggers any M3AGENT action, the executing code
runs in a “manual context,” which the dispatcher will allow to execute even though the
same M3AGENT request would be rejected from a modify command. The lockout of external
keywords can be overridden for up to 20 minutes by setting the MAN OVERRIDE timer keyword
to a number between 0 and 1200 seconds. (The override can be extended at any time by re-
entering a new value for MAN OVERRIDE.) This can be useful or even necessary for engineering
purposes, but is not normally needed for normal work when the module is on its handling
cart. All of the normal restrictions on module motion apply when the hand paddle is
connected.

∗The drum position may be inaccurate if the detent mechanism is not engaged during a
NoMoveInitRotate, as the drum can be up to ∼ 6 mm from the nominal position while the switch re-
mains active. However, the detent mechanism can only be engaged if the drum is initialized. In that case,
best practice is to execute one NoMoveInitRotate, then engage the detent (which will drag the drum into
accurate position), then repeat the NoMoveInitRotate. The sequencer for the TCS Init command does this
check-engage-and-retry.

33

CHAPTER 4. DISPATCHER INTERFACES FOR ROUTINE OPERATIONS ver 3.7b

4.3.1 LED’s

The four hand paddle LED’s are, left-to-right:

• LED 4 (green). Solid: Paddle is connected, module is stopped.
Blink: Paddle is connected, and an action is executing. Note that a request can be
active and in progress for 5-10 seconds without any user-visible activity other than
the blinking LED, because of the time required to power up a Galil and connect to it.

• LED 3 (green). Off: no error condition occurred (as recorded by M3ERM keyword).
Blinking, 5 seconds: a command is rejected, or a runtime error occurred. All normal
restrictions on module motion apply when the hand paddle is connected, so there can
be many reasons for a rejected request; you should use the K1DM3 engineering GUI
(section 5.2) to see the issue preventing motion.

• LED 2 (yellow). Off: Drums are not pinned together.
On: Drums are pinned together, which is required for raising the swingarm to the
Mirror90 position. (This condition gets its own indicator light because it appears to
be the most common cause of the blinking request-rejected LED.)

• LED 1 (red). Off: E-Stop not active.
On: E-Stop is active.

34

ver 3.7b 4.3. HAND PADDLE

4.3.2 Buttons

The buttons trigger actions when they are depressed, and do nothing when the button is
released — motion does not auto-stop upon releasing the button. To stop any on-going
motion, press the Stop or E-Stop buttons; also, if doing a Jog, you can press Jog again to
stop it.

A peculiarity of the dispatcher is that you must hold the button for up to 50 ms to
trigger an action, whereupon the leftmost LED will begin blinking. That is because the
hand paddle inputs are processed entirely by the dispatcher, which receives Galil updates
at 20 Hz, and are not “stretched” by the K1DM3 electronics, nor latched in the Galil.

Button-release is a no-op because each hand paddle action can take up to a minute to
execute, which is a very long time to hold down a button that takes a fair amount of force
to depress.

The eight buttons are shown in Table 4.1.

Table 4.1: Hand Paddle Functions
Row Left

Button
Right
Button

Functions

1 Shift E-Stop • The Shift (or “Function”) button does nothing
on its own. However, holding it down while press-
ing another button selects a second function.
• The E-Stop activates an E-Stop condition (at a
hardware level, not merely a software E-stop).

2 Out In • Move the mirror out of or into the light path.
? On a handling cart, Out means the Mirror90

(horizontal) position. The drums must be pinned
together for swingarm motion on the handling
cart.
? In the tertiary tower, Out means the full-retract
position.

3 MirrorUp/
Stow

⇑Step−
Step+

• Left button: rotates the drum between MirrorUp

and Stow orientations, the two most common po-
sitions.
• Unshifted right button: steps the drum to the
next increasing-angle detent position.
• Shifted right button: steps the drum to the next
decreasing-angle detent position.

4 ⇑Jog−
Jog+

Stop • Unshifted left button: invokes the JogPos ac-
tion.
• Shifted left button: invokes the JogNeg action.
See section 4.2, above, for the description of these
actions.
• Right button: stops motion.

35

Chapter 5

GUI’s

This section introduces the three graphical user interfaces for working with K1DM3 (the
dispatcher’s interfaces were introduced in chapter 4): the standard TCS interface, Tcsgui,
an engineering utility, k1dm3 gui, and k1dm3mon gui, a utility for showing the status from
k1dm3mon.

5.1 Tcsgui

The reader is assumed to be familiar basic Tcsgui use (see figure 5.1); this section focuses
on the k1dm3 implementation of each of the Tcsgui functions.

Figure 5.1: Tcsgui

Engineering GUI. The Eng drop-down menu has a ROT DM3 entry (not shown here) that
will ssh to k1dm3server and bring up the K1DM3 engineering GUI (section 5.2).

Instrument/Send. Selecting an instrument from the drop-down menu and pressing Send

causes k1dm3 to move to that instrument position. It will auto-Init if necessary
to fulfill the position demand. Exception: this will be rejected, with message “Init
required,” when K1DM3 is in standby (i.e., dispatchers are suspended).

36

ver 3.7b 5.1. TCSGUI

• On completion of the move, all power to the inner drum is shut off, and 48V
power for rotation is turned off.

INIT. The INIT button causes the dcs1 keyword TERTINITC to be set to true, which trig-
gers k1dm3 to invoke the script to execute the script $RELDIR/sbin/k1dm3/m3.init.
This is the only TCS command that can execute when the drum dispatcher is sus-
pended. (The drum dispatcher acts as the “lead” dispatcher and handles all TCS
interactions.)

• It un-suspends the dispatcher,
• initializes the drum if needed, and
• finishes with a move to TERTDEST.
• On completion of the move, all power to the inner drum is shut off, and 48V

power for rotation is turned off.

The INIT will fail if the E-box is unpowered; otherwise, it will generally succeed.

STOP. The STOP button causes the dcs1 keyword TERTHALTC to be set to true, which trig-
gers k1dm3 to invoke the script to execute the script $RELDIR/sbin/k1dm3/m3.halt.

• If either drum or swingarm is in motion, it is stopped.
• The control mode is set to Pos, leaving the module ready to receive normal motion

commands.
• The STOP button does not turn off any power supplies.

Exception: the STOP button is ignored when K1DM3 is in standby (i.e., dispatchers
are suspended).

0/1. The “on/off” button causes the dcs1 keyword TERTSTBYC to be set to true, which trig-
gers k1dm3 to invoke the script to execute the script $RELDIR/sbin/k1dm3/m3.stby.

• If either drum or swingarm is in motion, it is stopped.
• All power to the inner drum is shut off, and 48V power for rotation is turned off.
• Lastly, it suspends all dispatchers, putting the system into “standby” mode.

ABORT. The ABORT button causes the dcs1 keyword TERTABRTC to be set to true, which
triggers k1dm3 to invoke the script to execute the script $RELDIR/sbin/k1dm3/m3.stop.

• If either drum or swingarm is in motion, it is stopped.
• The ABORT button does not turn off any power supplies. The STOP and ABORT are

very similar, except that the ABORT command doesn’t set any particular control
mode after stopping ongoing motion.

Exception: the ABORT button is ignored when K1DM3 is in standby (i.e., dispatchers
are suspended).

DETAILS.

The detail panel (see figure 5.1) can be used to send K1DM3 to a new position, without
affecting the currently-selected instrument.

37

CHAPTER 5. GUI’S ver 3.7b

To do this, select a new instrument from
the details panel drop-down menu, and
Tcsgui will set the new tertiary po-
sition in the rot:tert:userDp EPICS
channel (K1DM3 will receive this as
dcs1 keyword TERTDEST). Then press the
’Set’ button, and Tcsgui will set the
rot:tert:slew EPICS channel to True;
when K1DM3 sees this transition (as
dcs1 keyword TERTMOVEC) it initiates a
move command to the tertiary position.

In general, all unnecessary power is turned off after a successful move or after the system
is put into the Standby state. After a Fault, STOP, or ABORT, however, the power supplies
are not in any particular state.

5.2 The Engineering GUI

Figure 5.2: K1DM3 Engineering GUI

The engineering gui, k1dm3 gui,
can be started from any
host on which the k1dm3
KTL library is installed.
Tcsgui ’s drop-down en-
try, “Eng→ROT DM3,” will
ssh to k1dm3server and
bring up k1dm3 gui.

The interface is shown
in figure 5.2. The drum
status is shown on the
left side, and the swing-
arm state is shown on the
right.

In the middle boxes,
the writable keywords
have their values shown
in grey boxes; these are
buttons that allow you to
select a new value and
command a motion. The
value is greyed-out if the
corresponding XMV key-
word (see sections 7.1,
12.4, and 12.5.1) is non-
blank, indicating that
this element is currently
forbidden from moving.
The non-writable keywords (e.g. Drum pin) have their values shown on a black background.

38

ver 3.7b 5.2. THE ENGINEERING GUI

Near the the bottom, the status of the dispatchers is shown, and at the bottom, any
critical dispatcher alerts are shown in yellow.

As an engineering gui, the “Rotation” and “Mirror position” boxes do not try to hide
the various state changes that are occurring under the hood, so to speak, and you will
sometimes see the mirror position jump around in a non-physical manner. This happens as
the swingarm control bootstraps each time the swingarm is activated and the inner drum
Galil is powered up. Another minor glitch is that the fraction-complete motion indicators
may go to 100%, then back off and show more motion, as the sequencer commands different
components through their steps. (The dispatcher doesn’t have a graceful way of combining
the various motions into a single motion-complete indicator keyword, so the gui is left
showing what is available.)

The top-right corner of the “Rotation” and “Mirror position” boxes contain status icons.
The icons are red if there is a motion-preventing problem (An X for a serious error; a dash
for a less-serious condition); yellow if there is an alert condition; green if the assembly is
“Ready”, or grey gears if the assembly is moving.

The Restart pull-down menu at the top of the GUI allows the user to restart individual
dispatchers, or all of the motion-control dispatchers, if and only if the user interface is
running on the same computer, k1dm3server, as the dispatchers themselves. This may be
amended in the future to work from any computer that has access to the k1dm3 KTL service.

The M3Agent pull-down menu at the top of the GUI gives direct access to the M3AGENT

master do-everything keyword (see section 4.2), allowing you to command motion to any
position. It also lets you bring up a log window that shows the combined output of the
M3MSG and ACTIVMSG keyword log streams.

Figure 5.3: Drum Detail Popup

Detail panels for the drum and swingarm can be
brought up by clicking the status icons. The detail
panel shows a variety of keywords; as with the main
panel, any grey boxes are clickable to allow you to
command the corresponding writable keyword.

39

CHAPTER 5. GUI’S ver 3.7b

5.3 The K1dm3mon GUI

The K1dm3mon monitor daemon (section 9) raises an alert when any of around 20 conditions
occurs. The conditions are grouped hierarchically, and divided into topics of “Drum,”
“Swingarm,” and so on. K1dm3mon gui provides a quick at-a-glance view of the conditions,
by presenting them in a tree view, grouped into separate tabs.

Figure 5.4: k1dm3mon gui

40

Chapter 6

Restrictions & Interlocks

6.1 Introduction

The K1DM3 dispatchers implement many software interlocks. This section lists the inter-
locks, including the rationale behind any non-obvious constraints, and discusses when and
how to override them.

Any motor stage or digi-stage — in galildisp, a “digi-stage” represents a mechanism
that is controlled and monitored by a collection of I/O bits — can have zero or more
constraints (interlocks) defined in its configuration. Each stage also has a stage XMV keyword
(mnemonic: XMV = “can’t move”) that lists the active interlocks that prevent motion.

Generally, if a stage has rejected a move request, the reason will be quickly understood
by inspecting the XMV keyword. If a constraint becomes true while the stage is in motion,
the dispatcher will stop the stage. In some cases, the constraint will only be true for a
brief moment. For example, if a stage triggers an overspeed condition, and the dispatcher
promptly stops the stage, then the condition will only appear in the XMV keyword during the
brief overspeed period. In that case, the stage’s stage ERR and stage ERM keywords (error
number and error message, respectively) will show the reason for stopping. Sometimes, you
may need to inspect the logfile for additional information.

Assemblies (combo-stages) also have XMV keywords, but they do not have their own
explicitly-defined constraints. Instead, an assembly inherits the constraints of its compo-
nents, except for those that are expected to be handled by normal sequencing. For example,
if K1DM3’s swingarm clamps are closed, the two actuators ARM A and ARM B are forbidden
from moving, and the keywords ARM A XMV and ARM B XMV will include the notice “Clamp
state is ’Closed’.” However, this is a normal operating condition — the SWINGARM as-
sembly opens the clamps before commanding the actuators to move — so we do not want
the SWINGARMXMV keyword to indicate that the clamp status is a problem. We handle this
in the dispatcher configuration by flagging the clamps-closed constraint as “part of normal
sequencing,” which tells the dispatcher not to add the component-level XMV value to the
parent assembly’s XMV keyword.

Some constraints are for reporting only. For example, no motion is possible when an
E-stop is active, because the E-stop condition shuts off power to all moving components.
This is made visible to the end user by adding a software constraint to forbid motion when
the E-stop is active, so that the condition shows up in the stage’s can’t-move reason.

Certain constraints can be bypassed by setting an “engineering” flag that turns off the

41

CHAPTER 6. RESTRICTIONS & INTERLOCKS ver 3.7b

safety interlock. Each assembly, motor stage, and digi-stage has an engineering-flags key-
word, stage ENG, and setting stage ENG=XSAFETY will bypass all the “bypassable” con-
straints for that stage. Each stage also has an engineering-timer keyword, stage ENT, which
can be set between 0 and 1200 seconds. The timer is automatically set to 1200 seconds
whenever the ENG keyword is set; when it expires, the engineering flags are inoperative. The
timer keyword can be modified at any time to extend or disable the engineering flags.

When an assembly’s engineering keyword is set, it recursively sets the engineering flags
of its components to the same value. Thus, if you want to enable the XSAFETY flag for all
the components of the swingarm, you can simply set SWINGARMENG=XSAFETY, or clear the
engineering flags with SWINGARMENG=none. As a general rule, it is safer to set a stage-specific
flag, rather than set an assembly-level flag which may unintentionally bypass additional
restrictions.

6.2 Bypassing the M3AGENT Sequencer

In normal use, one should use the M3AGENT sequencer for all motions, and the ACTIVATE

sequencer for some high-level engineering tasks. This will follow best practices for leaving the
system in a ready-to-observe state (inner drum air disconnected, power off, etc.). Sometimes,
for engineering tasks, one wants to issue lower-level commands to put the system into a
movable state, but not put the system into the ready-to-observe state. We find that it’s all
too easy to forget some essential command and be tripped up repeatedly by interlocks, so
this section provides a bare-bones outline of what’s required for motion.

Drum

The minimum conditions for operating the drum are:

• Swingarm in V-blocks and clamps are closed. If not, and drum is at 6- or 12-o’clock,
start with:

modify -s k1dm3 M3AGENT=NoMoveInitEncoders

• Then, if swingarm isn’t in the V-blocks:

modify -s k1dm3 SWINGARMNAM=Deployed,unclamped

• If clamps aren’t closed:

modify -s k1dm3 CLAMPSPOS=Closed

• Air supply disengaged from inner drum:

modify -s k1dm3 AIRSUPPPOS=Disengage

• Inner drum 24V and 48V supplies are off:

modify -s k1dm3 INNER48V=Off

modify -s k1dm3 INNER24V=Off

42

ver 3.7b 6.3. CONDITIONS WITHOUT OVERRIDE

Swingarm

The minimum conditions for operating the swingarm are:

• If in the tower, and the drum is at the Cass/Stow position, then the telescope elevation
must be > 45 degrees.

• If on the handling cart, the drum must be at the MirrorUp orientation.

• Whether in the tower or on the handling cart, if the drum is in the MirrorUp orienta-
tion, the inner and outer drums must be pinned together.

• The drum detent mechanism and air supply must be engaged:

modify -s k1dm3 DETENTPOS=Engage AIRSUPPPOS=Engage

6.3 Conditions Without Override

6.3.1 Swingarm

The following conditions forbid swingarm movement, and do not have an XSAFETY override:

• an E-stop is active;

• any cables except the hand paddle are disconnected;

• an actuator motor has overheated;

• there is no signal to indicate if the module is in the telescope tower or on the handling
cart;

• the module is in the mirror-facing-up orientation but the inner and outer drums are
not pinned together;

• the drum is not homed.

The distinction between in-tower and on handling-cart is important because the swing-
arm can’t be safely unclamped when the module’s orientation is near horizontal, i.e. at low
elevations or on the handling cart. When operating the swingarm with the mirror facing up
— normally only needed for mirror removal — the inner drum becomes grossly unbalanced
when the swingarm retracts out of the V-blocks. In that case, gravity can cause the inner
drum to whip around at startling and dangerous speeds, and therefore this motion is always
disallowed unless the drums are pinned together. (When retracting the mirror in the nor-
mal operational mirror-down “Cass/Stow” orientation, the module is stable against gravity.)
The drum must be homed for swingarm motion so that we can trust the reported swingarm
orientation (mirror up vs down). (Note that in the positions with swingarm power, the
drum can be homed without motion, so there is no reason to supply a safety-override, and
good reasons not to do so.)

43

CHAPTER 6. RESTRICTIONS & INTERLOCKS ver 3.7b

6.3.2 Drum

The following conditions forbid drum movement, and do not have an XSAFETY override:

• an E-stop is active;

• any cable is disconnected (except the hand paddle);

• no signal is active indicating the module is either in the telescope tower or on the
handling cart;

• the inner and outer drums are pinned together;

• the air supply is not disconnected from the inner drum;

• the detent mechanism is not disengaged;

• power to the inner drum is on;

• one of the two position switches that trigger at the MirrorUp and Cass/Stow positions
are active, but the drum encoder is not in agreement.

6.4 Overridable Conditions

The following five conditions can be overridden by setting the engineering XSAFETY flag for
the appropriate stage or assembly. Using the override must be done with careful attention
both to the specific condition you are intending to override, and also to the other conditions
that will be overridden by setting that stage or assembly’s XSAFETY flag. Reminder: If you
set or clear SWINGARM engineering flags, the changes will apply to all of the CLAMPS, ARM A ,
and ARM B components.

1. The swingarm clamps and actuators will normally refuse to operate when the drum
is at the mirror-down (Cass/Stow) orientation, and either (a) the module is in the
tertiary tower and the elevation is below 45◦, or (b) the module is on the handling
cart.

Consequences of misused XSAFETY override:

• If the swingarm is clamped in the V-blocks, opening the clamps allows the mirror
to fall ∼ 5cm before the compliance in the swingarm hinge is used up and the
mirror is abruptly halted.

• If the swingarm is retracted in the mirror-facing-up orientation the drum will be-
come unbalanced against rotation; if the drum detent is not engaged (or becomes
disengaged due to loss of air), an uncontrolled rotation can occur.

Therefore, only override this condition if you’ve mechanically prevented the drum from
rotating — such as by pinning the drums together — and ensured the mirror won’t
drop abruptly from the V-blocks.

To override the restriction for all clamps and the swingarm actuators, use the assembly
keyword:

SWINGARMENG=XSAFETY

Also affects: items 2, 3, 4

44

ver 3.7b 6.4. OVERRIDABLE CONDITIONS

2. The swingarm actuators will not operate if the drum detent is disengaged.

Consequences of misused XSAFETY override: If you override this to retract the swingarm
in the mirror-down orientation, the drum will become unbalanced, and can trigger
uncontrolled rotation.

To override the restriction for the swingarm actuators, use the actuator keywords:
ARM A ENG=XSAFETY ARM B ENG=XSAFETY

Also affects: items 1, 3, 4

3. The swingarm clamps will not operate if the swingarm is not within 0.5 mm of its
zero-point in the V-blocks. If you are sure that it is safe to operate the clamps — say,
a technician is manually assisting the swingarm to be very close to the proper point,
but it’s still 1.0 mm away — you may use the XSAFETY override and command the
clamps to close.

Consequences of misused XSAFETY override: If the swingarm is not close to the correct
in-V-block position, The hardened surfaces of the V-blocks could be damaged by being
struck by the clamps, or the clamp faces could be damaged by striking part of the
swingarm.

To override the restriction, use the clamps assembly:
CLAMPSENG=XSAFETY

Also affects: items 1, 2, 4

4. During K1DM3 installation, and perhaps during some servicing, it’s necessary to move
the swingarm in the tower without having the docking mechanism connected. At
other times, engineering work may also make it necessary to move the swingarm with
the dock disconnected. To do this kind of work, the swingarm dispatcher must be
reconfigured and restarted, following the instructions in section 2.3, so that it knows
it is operating without a connected dock.

When configured to operate this way — indicated by keyword k1dm3.WITHDOCK =
false — the dispatcher expects that the dock’s wiring cables will be disconnected.
The two swingarm actuators will refuse to move if the docking cables loopback signal
is active, since that is contrary to the assertion that the system is operating without
the dock. If the dock is in fact connected, but it is necessary to have the swingarm
ignore the dock’s presence for engineering purposes, then you must override this with
an XSAFETY override.

Consequences of misused XSAFETY override: If you override this but the docking mech-
anism is installed and its pin engaged, the module can be seriously damaged by running
the swingarm’s docking tang into the docking pin.

To override the restriction, use the assembly keyword:
SWINGARMENG=XSAFETY

Also affects: items 1, 2, 3

5. The CLAMPSCLOSED signal, which is read by the rotation control Galil, must show that
all four clamps are closed. This is safe to override if you know the clamps are firmly
closed, or if the module is pointed at zenith so that the swingarm cannot flop around
during rotation.

Consequences of misused XSAFETY override:

45

CHAPTER 6. RESTRICTIONS & INTERLOCKS ver 3.7b

• If the module is horizontal (or at low elevation), and the swingarm is significantly
retracted from the V-blocks, then the drum will be badly out of balance during
rotation. If the rotation drive reaches an overtorque condition while pushing
the unbalanced drum against gravity, the motor will shut off and the drum will
rotate back under gravity. The uncontrolled drum motion can be dangerous to
any nearby personnel.

• If the swingarm is close to or in the V-blocks, then the drum will be reasonably
well balanced and can still rotate without trouble at any elevation. However,
if the swingarm is not restrained from motion, then at low elevations or in the
handling cart, its compliance will allow it to sag or fall to the side — possibly
dragging against the V-block surfaces — as the module rotates.

To override the restriction, use the rotation drive keyword:
ROTATENG=XSAFETY

46

Chapter 7

Recovery From Failures

The great majority of move restrictions are handled by correct sequencing of actions, and
the most effective way to execute them is to use M3AGENT. This section addresses recovery
from more serious problems that requires human intervention. Many of the recovery steps
require one to set an engineering safety-override flag.

7.1 General Troubleshooting Tips

• The k1dm3 service writes voluminous logs, using usingsyslog(3). The configuration file
/etc/rsyslog.conf directs the messages from k1dm3 to files in /kroot/var/log/.
All messages from dispatcher n go to file k1dm3-n debuglog; additionally, a copy of
all messages with severity higher than DEBUG are put into k1dm3-n log.

Additionally, the k1dm3mon service logs to k1dm3mondebuglog and k1dm3monlog.
(The k1dm3saf service has similar logfiles, but its entries are generally barren, because
pretty much all information of interest is put into its keywords, and there is nothing
else to log.)

• The XMV keywords (see 12.4 and 12.5.1) are often useful for identifying problems that
prevent motion. Don’t just look at the XMV keyword at an assembly level, such as
SWINGARMXMV, because sometimes important trouble-shooting values are in its com-
ponent XMV keywords and not propagated up to the assembly level. The following
command will show all the XMV keywords that are related to the swingarm and drum,
respectively:

gshow -s k1dm3 %XMV,d:%1 (Swingarm)

gshow -s k1dm3 %XMV,d:%2 (Drum)

These commands select all keywords ending in XMV that also belong to dispatcher #1
(d:%1) or #2 (d:%2).

Example: With the swingarm retracted, we see:

ARM A XMV = 48v power supply is ’Off’; Amplifier state;

Swingarm docking pin not disengaged

ARM B XMV = (same as for A)

47

CHAPTER 7. RECOVERY FROM FAILURES ver 3.7b

SWINGARMXMV =

In this case, the actuators can’t move for perfectly normal reasons: the motor power is
off; the Galil’s motor power amplifier has a state problem (looking at ARM A AST, the
Amplifier STate keyword, we see the problem is an undervoltage condition, because
the power is off); and the swingarm dock is engaged. However, the the swingarm
assembly level isn’t showing any problem at all, because turning on motor power and
disengaging the dock are all part of normal swingarm sequencing.

• The MSG keywords for each stage or assembly sometimes contain useful messages that
explain how the system got to its present state, plus they always contain the text
message that accompanies the error code that is put into the ERR keyword. The
ERM keyword contains just the error messages, and leaves out the additional text
commentary.

• The keyword history database (Lanclos and Deich, 2012) is an invaluable source of
information. It’s a nearly complete history of all keyword broadcasts from the k1dm3,
k1dm3saf, and k1dm3mon KTL services. The simplest way to retrieve data from it
is to use the gshow applications, which will query the history database instead of the
live service whenever invoked with a -date option. Alternatively, you can make your
own queries to the postgresql database containing the history data, but it is beyond
the scope of this document to go into the details.

• The k1dm3mon monitor service (see chapter 9) has been configured to monitor roughly
20 conditions. If the cause of a problem isn’t obvious from the k1dm3 messages, it
may be useful to check k1dm3mon to see if it has identified the cause.

It is pretty easy to add new rules and conditions to k1dm3mon’s configuration, so if
we have left out something that should be monitored, this can be readily addressed.

7.2 Low-level Actuator Operations

If for some reason you want to control the actuators with low-level Galil commands, here
is a useful way to do it while keeping the swingarm dispatcher operational, so that you can
continue to use the dispatcher keywords for monitoring and other controls. The basic trick
is to use the CTRL1AUX keyword, which uses the dispatcher to pass raw Galil commands
to the swingarm Galil; the response from the Galil is put into the same keyword, and can
be read back using a show command. Many of the following examples use the k1dm3.io
command, which simply combines a modify, waits 100 ms, and a show of the same keyword.

1. Preliminaries.

You’ll always need the swingarm Galil on, and you’ll also want the 48V supply turned
on:

modify -s k1dm3 INNER24V=On

modify -s k1dm3 INNER48V=On

If the swingarm Galil was self-suspended (auto-suspended), it will auto-resume when
INNER24V is turned on; but it will not auto-resume if it was not auto-suspended. In
that case, unsuspend it by setting DISP1SUSP to the empty string:

48

ver 3.7b 7.3. SPECIFIC ISSUES

modify -s k1dm3 DISP1SUSP=

After unsuspending, wait until DISP1STA is Ready. Then do:

modify -s k1dm3 CLAMPSPOS=Open DOCKPOS=Disengaged

2. Gantry Mode.

The actuators are slaved using the Galil’s “gantry” mode. To turn on gantry mode,
slaving axis B to axis A, do:

k1dm3.io CTRL1AUX="STAB;GA,CA;GR,1.0;GM,1"

In gantry mode, commanding axis A will cause axis B to follow; you can test this by
doing a small move, checking the position before and after, such as:

k1dm3.io CTRL1AUX="SHAB;PRA=200;BGA"

(Take care to choose a sensible direction of motion; if the swingarm is retracted, use
PRA=-200.) If actuator B did not follow actuator A, then the gantry mode didn’t
work. Try commanding actuator B by hand, then re-check its position:

k1dm3.io CTRL1AUX="SHB;PRB=200;BGB"

To move actuator B without adjusting actuator A, and without breaking the slaving,
use the IP (Increment Position) command:

k1dm3.io CTRL1AUX="SHB;IPB=xxx "

3. Unslaved Mode.

To turn off gantry mode, slaving axis B to axis A, do:

k1dm3.io CTRL1AUX="STAB;GR,0;GM,0"

To move both actuators when not slaved, use:

k1dm3.io CTRL1AUX="SHAB;PRAB=xxx ;BGAB"

7.3 Specific Issues

N.B. When you apply a safety override, check to be sure that nothing except the known
issue is being overridden! See chapter 6 for the effects of enabling different safety overrides.

7.3.1 Dispatcher fails to reconnect to its Galil properly.

Indicated by: The dispatcher status, DISPx STA (x = dispatcher number: 1, 2, 3), cycles
among Connecting to device → Authenticating with device → CommsOk, but never
goes to Finalized → Ready.

Possible cause: bug in dispatcher
Resolution:

1. Try suspending/unsuspending the dispatcher:

49

CHAPTER 7. RECOVERY FROM FAILURES ver 3.7b

modify -s k1dm3 DISPx SUSP="to force reconnect"

modify -s k1dm3 DISPx SUSP=""

2. If that fails, simply restart it:

k1dm3 restart dispx

7.3.2 Galil rejects motion due to Amplifier Fault

After clearing an E-Stop condition, the Galil still prevents motion because of an “amplifier
fault”.

Indicated by: SWINGARMXMV or DRUMXMV shows an amplifier fault.
Resolution: The amplifier fault occurred because 48V power had been abruptly removed

by the E-Stop. To clear it, turn the motors off, then on. For rotation, use:

modify -s k1dm3 ROTATMOO=Off

modify -s k1dm3 ROTATMOO=On

For the swingarm, use

modify -s k1dm3 SWINGARMMOO=Off

modify -s k1dm3 SWINGARMMOO=On

7.3.3 Erroneous clamps-not-closed condition

The drum assembly refuses to rotate because the clamps are erroneously indicating not-
closed. The rotation drive will not operate unless keyword CLAMPSCLOSED shows all clamps
are closed. As described in section 1.1.2, the clamps-open limit switches are read by the
swingarm Galil, but the full-closed signal is read by the rotation Galil. The full-closed
signal has to pass through the inter-drum electrical contacts, which means the signal is
only available when the inner drum is at Cass/Stow, MirrorUp, or one of the instrument
positions.∗

Indicated by: ROTATXMV says clamps aren’t closed, and CLAMPSCLOSED isn’t “A,B,C1,C2”,
but visual inspection shows that the clamps are in fact closed.

Possible Causes and Resolution:

• If dispatcher is restarted when not at a powered position, it will be unable to read the
clamps-closed signal.

After visually verifying that the clamps are in fact closed, you can address this using
either of the following methods:

1. You can set an engineering flag to permit rotation when the clamps are not
indicating closed:

modify -s k1dm3 ROTATENG=XSAFETY

Then rotate to an instrument position, and CLAMPSCLOSED should update cor-
rectly. Clear the XSAFETY flag when you’re done (it will auto-clear after 20 min-
utes):

∗Unlike some other values, the CLAMPSCLOSED value is not cached across dispatcher restarts because it
could lead to serious problems if the clamps are erroneously assumed to be closed.

50

ver 3.7b 7.3. SPECIFIC ISSUES

modify -s k1dm3 ROTATENG=none

2. Alternatively, you can issue an engineering-level command that directly sets the
internal variable which says the clamps are closed:

modify -s k1dm3 DISP2DWIM=’kset CLAMPSCLOSED 15’

(The CLAMPSCLOSED keyword is a mask value, with one bit for each clamps; the
value 15 means that all clamps are closed.)

• If an electrical problem causes the signal to be in error, you can temporarily rotate
using one of the above techniques, always verifying that the clamps are actually closed.

• A clamp limit switch may need adjustment. You can use the XSAFETY override, de-
scribed above, to rotate, after visually verifying that the clamps are in fact closed.
Then adjust the limit switch per the procedure in LTN1040 (Ratliff, 2018b).

• Software error. A software error could allow the CLAMPSCLOSED keyword to be updated
with the incorrect value, perhaps by updating at a time when the signal is not actually
available. After visually verifying that the clamps are in fact closed, you can hand-set
the correct value:

modify -s k1dm3 DISP2DWIM="kset CLAMPSCLOSED 15"

7.3.4 Clamps are not closed

Drum assembly refuses to rotate because the clamps are correctly indicating not-closed.
Possible Causes and Resolution:

Low Air Pressure. The k1dm3 dispatcher monitors the air pressure at the inner drum,
and ACTIVATE=Swingarm will throw an error if air pressure doesn’t reach 75 psi. How-
ever, when commanded to operate the clamps, it will always try to do so regardless of
the pressure. (The k1dm3mon monitor will raise an alert if the air supply is engaged,
but pressure remains below 75 psi.)

Solution: Correct the air supply pressure.

Clamp Is “Soft”. The clamps do not require air pressure to stay firmly closed. However,
when the clamps are open and the air supply is disconnected — which is the normal
state when at Cassegrain — the air pressure can slowly leak to zero over a period of
hours. This allows the clamps to sag slightly away from the “IsOpen” limit switch,
and the clamp position will report Unknown.

In normal operations, this is not a problem. The k1dm3 service begins all swingarm
moves by connecting the air supply and commanding the clamps to open, thus ensuring
the clamps are fully open.

Hardware Failure. If a clamp is unable to close due to a failure of plumbing, electronics,
or the clamp itself, and the K1DM3 module is installed in the tertiary tower, we assume
your goal is to safely remove the module from the tower in order to troubleshoot it on
a handling cart.

The general approach is rotate the drum to the Cass/Stow (mirror-down) position,
because that is always a stable position against gravity-induced rotation of the drum,
move the swingarm to the deployed position in the V-blocks, secure the swingarm,
and remove the module from the tower.

51

CHAPTER 7. RECOVERY FROM FAILURES ver 3.7b

1. If the module is not at the Cass/Stow position, slew the telescope to zenith, where
it’s safe to rotate regardless of the clamp state, set the XSAFETY engineering flag,
and rotate to Cass/Stow:

modify -s k1dm3 ROTATENG=XSAFETY

modify -s k1dm3 DRUMNAM=Stow

2. Move the telescope to horizon, and use the “Come-along” procedure (Tripsas
et al., 2016) to bring the swingarm into the V-blocks.

3. Remove the module from the tower.

7.3.5 Air supply nozzle will not disconnect.

Possible Causes and Resolution:

Nozzle Sticking to Inner Drum. If the nozzle is left connected to the inner drum for
several hours or longer, it can stick to the inner drum.

Therefore, you should always disconnect the nozzle after moving the swingarm. The
standard M3AGENT sequencer does this, but if you connect the nozzle by directly using
the AIRSUPPPOS keyword, you must remember to disconnect it before hours have
passed.

Solution: In our (limited) experience with this situation, we have found that the nozzle
does disconnect after several attempts to cycle its position:

modify -s k1dm3 AIRSUPPPOS=Disengage

modify -s k1dm3 AIRSUPPPOS=Engage

. . . iterate until success. . .

Solenoid Failure. If the air supply solenoid fails with the nozzle engaged, you must pull
the module from the tower and repair or replace the solenoid. Do not attempt to
rotate the module with the air supply nozzle engaged.

7.3.6 Need to operate swingarm, mirror facing down

On rare occasions, some repair task or other engineering task requires you to operate the
swingarm in its mirror-down orientation on the handling cart or at low elevation in the
tertiary tower. To do this:

• Use the comealong procedure (Tripsas et al., 2016) or similar to ensure the swingarm
will not fall abruptly out of the V-blocks when the clamps are opened.

• Use the clamps’ XSAFETY engineering flag to allow them to open despite the low ele-
vation or being on the cart:

modify -s k1dm3 CLAMPSENG=XSAFETY

modify -s k1dm3 CLAMPSPOS=Open

• Carefully transfer the swingarm’s weight from the comealong straps (or your strong
arms, if that’s what you used) to the actuators.

• You can now operate the swingarm, but you must enable its XSAFETY engineering flag
first:

52

ver 3.7b 7.3. SPECIFIC ISSUES

modify -s k1dm3 SWINGARMENG=XSAFETY

After moving the swingarm as needed, clear the engineering flags:

modify -s k1dm3 SWINGARMENG=None

7.3.7 Software lockout is active

If a software lockout is set, the dispatcher will refuse to move the corresponding stage.
Each stage has a keyword named stage LCK. If this has any value other than “unlocked”, a
software lockout is active.

The safety monitor k1dm3mon may set software lockouts under some circumstances, but
will not remove them, even when the issue clears. When safe to proceed, a human must
explicitly clear the condition by clearing the keyword or setting it to unlocked. Note: if
you clear an assembly’s lock, it will also recursively clear any software locks on its members.

To clear software locks on both actuators and all clamps, use

modify -s k1dm3 SWINGARMLCK=unlocked

To clear software locks on the drum rotation drive, detent mechanism, and air supply to
the inner drum, use:

modify -s k1dm3 DRUMLCK=unlocked

7.3.8 SwingArm Safety System shutdown: arm past deploy point

The swingarm is in the V-blocks, beyond the limit allowed by the Swingarm Safety System,
causing an E-stop to be triggered, but is not in a hard stop. The condition will be reflected
in the following keywords (these are three equivalent ways of viewing the same information):

k1dm3.SAFETYBITS1 contains EncOutOfRange;
k1dm3.SAF EIR is No;
k1dm3saf.ENC INRANGE is No.

Recovery requires temporarily modifying the Swingarm Safety System’s lower limit so
that the E-Stop condition clears, then moving the swingarm into the safe range.

1. The V-block neutral position is with ARM A RAW = ARM B RAW = 0 motor encoder counts.
The maximum allowed distance beyond 0 is 800 Renishaw counts, or approximately 630
motor encoder counts. Set a temporary new maximum distance using the greater of
|ARM A RAW| and |ARM B RAW|, plus 200 counts; multiply by 1.27 to convert to Renishaw
units, and call this number xxx .

2. Apply the SASS Temporary Override Procedure (section 7.5) using LoOff=xxx .

7.3.9 Swingarm actuator is in a hard stop

This is like issue 7.3.8, above, but the swingarm is so deeply beyond the V-blocks that one
of the swingarm actuators is in a hard stop. In that case, hands-on intervention is required;
see LTN1039 (Ratliff, 2018a).

53

CHAPTER 7. RECOVERY FROM FAILURES ver 3.7b

7.3.10 Swingarm Safety System shutdown: misaligned arms

If the swingarm actuators’ Renishaw absolute encoders differ by a large enough amount, it
will cause the Swingarm Safety System to apply an E-Stop. The condition will be reflected
in three keywords (these are three equivalent ways of viewing the same information):

k1dm3.SAFETYBITS1 contains EncDisagree;
k1dm3.SAF EAG is No;
k1dm3saf.ENC AGREE is No.

The safety system configuration allows a difference between the actuators of up to 0.5mm,
or 2048 Renishaw encoder counts. This is large enough to rarely be triggered, yet small
enough that the system can handle a series of 0.5 mm shifts without getting into a mechan-
ically unsafe situation. That allows an engineer to experiment with several recovery steps,
without entering disastrously bad territory.

Recovery requires temporarily modifying the Swingarm Safety System’s maximum al-
lowed difference so that the E-Stop condition clears, then correcting the misalignment. There
is, deliberately, no handy one-line tool for changing the safety RIO settings. Instead you
must telnet to the safety RIO and type in the Galil command directly. Proceed as follows:

1. The difference between the actuators’ absolute encoders, in motor encoder units, is in
keyword k1dm3saf.ARMDIFF∗. Convert this to Renishaw encoder units units by mul-
tiplying by 1.27, and then add (say) 1000 extra counts to give you a bit of headroom;
call the result xxx .

2. Apply the SASS Temporary Override Procedure (section 7.5) using Xdifmax=xxx .

7.3.11 SASS: Arms misaligned and are past deploy point

The swingarm’s arms are misaligned (7.3.10) and actuator A is too far into the V-block
limit, indicated by ARM A RAW < −1000. In this case, ALIGNARMS will refuse to execute.

The general procedure is to first break the slaving of actuator B to actuator A, and
then move the actuators, individually if possible, taking care to not exceed a safe difference
between them.

1. Start by clearing the E-stop: apply the SASS Temporary Override Procedure as de-
scribed in 7.3.10.

2. Now break the actuator slaving:

modify -s k1dm3 INNER48V=On

modify -s k1dm3 SWINGARMMOO=On

modify -s k1dm3 SWINGARMASM=Unlinked

3. Try to move the actuators individually. Whichever actuator’s position is more negative
should be commanded the right distance to move away from the V-blocks to align with
the other actuator. In the following, d is the distance to move. Start with 100 counts,
and verify that the actuator moves as expected:

∗Note that k1dm3saf.ARMDIFF is the difference between the absolute encoders, converted to motor encoder
units. Don’t confuse this with k1dm3.ARMDIFF, which is the difference between the actuators’ motor encoders

54

ver 3.7b 7.3. SPECIFIC ISSUES

modify -s k1dm3 CTRL1AUX="SHA;SPA=200;PRA=d ;BGA" or
modify -s k1dm3 CTRL1AUX="SHB;SPB=200;PRB=d ;BGB"

After gaining confidence that you are making the right corrections, and that only the
expected actuator is moving, you can change to using larger steps in d . The actuators
should now be reasonably aligned.

7.3.12 SwingArm Safety System shutdown: overshot V-blocks

One or both of the swingarm actuators’ Renishaw absolute encoders indicate the swingarm
position is excessively past the normal position in the V-blocks, causing the Swingarm Safety
System to apply an E-Stop. The condition will be reflected in three keywords (these are
three equivalent ways of viewing the same information):

k1dm3.SAFETYBITS1 contains EncOutOfRange;
k1dm3.SAF EIR is No;
k1dm3saf.ENC INRANGE is No.

This is a variation of the preceding issue; follow the directions above to recover.

7.3.13 SwingArm Safety System shutdown: impossible encoder
value

One absolute encoder is mis-reading by a ridiculous amount, causing the Swingarm Safety
System to apply an E-stop. The absolute encoder values, converted to swingarm motor
encoder values, are shown in the k1dm3saf keywords ARM A ENE and ARM B ENE. One encoder
value will be in the normal range, approx 0 . . . 399300, and the other will be far outside that
range.

This situation was encountered 2-3 times during development and installation of K1DM3,
and then started to occur more frequently after commissioning. It was eventually resolved
by replacing the encoder that showed impossible values. In the interim, the workaround
was to power-cycle the inner-drum systems, and hope that the encoder would then behave
correctly:

modify -s k1dm3 INNER48V=Off

modify -s k1dm3 INNER24V=Off

Then: ACTIVATE=Swingarm/noinit -or- ACTIVATE=Swingarm

modify -s k1dm3 ACTIVATE=Swingarm

or

modify -s k1dm3 ACTIVATE=Swingarm/noinit

7.3.14 Docking pin becomes stuck

If the docking pin becomes stuck in the engaged position, try cycling it several times:

modify -s k1dm3 DOCKPOS=Engage

modify -s k1dm3 DOCKPOS=Disengage

55

CHAPTER 7. RECOVERY FROM FAILURES ver 3.7b

7.3.15 Docking pin reports incorrect position.

The cause may be a misadjusted limit switch. If you can visually verify that the docking
pin is engaged or disengaged, then you can temporarily and carefully tell the dispatcher to
directly set the DOCKPOS keyword. Note: this is overridden whenever one of the dock’s limit
switches activates:

modify -s k1dm3 DISP3DWIM="kset DOCKPOS 1" (force Disengaged) or
modify -s k1dm3 DISP3DWIM="kset DOCKPOS 2" (force Engaged)

Be sure to clear the dock position to the Unknown value when you are done with this
temporary setting:

modify -s k1dm3 DISP3DWIM="kset DOCKPOS 0" (force Unknown)

7.3.16 In-tower switch failure

The K1 tertiary tower contains a switch that is activated when the tertiary module is
installed; when it’s active, the LOCATION mask keyword’s Tower bit is active. Normally, the
k1dm3 service will respond to TCS tertiary commands and set status information in TCS
tertiary keywords, only when LOCATION = Tower.

If the switch fails so that the in-tower signal is erroneously false, the M3ENG engineering
keyword’s USEDCS flag can be set to direct k1dm3 to respond to TCS, regardless of the
LOCATION value. (Engineering flags always time out after 20 minutes, but you can reset the
timer at any point using the M3ENT “ENgineering Timer” keyword.)

If the switch fails and indicates “true” when there is no module in the tower, or indicates
true because the old M3 is installed in the tower, then there will be a conflict between the
in-tower signal being true, and the module being pinned to the handling cart. The only
workaround for this is to make a low-level command that temporarily tells sets the LOCATION
value to Cart only, and clears the Tower signal:

modify -s k1dm3 DISP1DWIM="ksetMacval LOCATION CART"

This is only a temporary workaround: from time to time events will occur that cause k1dm3
to reload the LOCATION value with the actual input signal values, so it will again show
a conflict of Tower as well as Cart; in that case, you have to re-issue the above modify
command.

7.4 Power Outage

The consequence of widespread loss of power will be somewhere between trivial and sub-
stantial inconvenience. The optimal recovery strategy depends on whether the swingarm
was retracted, deploying, or deployed at the time of power loss, and whether the instrument
host (k1dm3server) also lost power.

Note: if the facility air compressor is unpowered for an extensive length of time, air
pressure may drop, and the drum detent mechanism can disengage. K1DM3 will not attempt
to move the swingarm if the detent cannot be engaged.

If computer power was lost, the dispatchers would have been restarted at boot time.
Galildisp does not start correctly if the controlled Galil is not up when the dispatcher
starts, so the following procedure accounts for this possibility.

56

ver 3.7b 7.4. POWER OUTAGE

• The following procedure will recover correctly regardless of whether the module, the
instrument host, or both lost power. It takes more steps than are required if one of
them did not lose power.

• If possible, ensure the air supply is normal before proceeding.

• Before executing the recovery procedure, open the engineering gui, k1dm3 gui, and
use it to monitor the recovery progress. From its menu bar, select the entry

M3Agent → Show log...

• Before executing the recovery procedure, open the DM3 monitor gui, k1dm3mon gui.

Execute this procedure from the instrument host, k1dm3server:

1. Restart the drum dispatcher:

k1dm3 restart drum

2. Restart the dock dispatcher:

k1dm3 restart dock

3. Initialize the drum.
First, try to initialize the drum without motion:

modify -s k1dm3 M3AGENT=NoMoveInitRotate

Check the drum calibration state:

gshow -s k1dm3 DRUMCAL

If the value is not homed, then initialize by letting it rotate to read the distance-coded-
reference marks:

modify -s k1dm3 ACTIVATE=Rotate modify -s k1dm3 DRUMCAL=homed

4. Put the drum at the stow position, so that the swingarm has power:

modify -s k1dm3 DRUMNAM=Stow

5. Restart the swingarm dispatcher (the @@ suffix tells the start/stop script to automat-
ically turn on the inner drum power, if it’s not already on):

k1dm3 restart@@ swingarm

6. Initialize the swingarm.

modify -s k1dm3 M3AGENT=NoMoveInitEncoders

7. Check if the swingarm is at a secure position:

gshow -s k1dm3 SWINGARMNAM

57

CHAPTER 7. RECOVERY FROM FAILURES ver 3.7b

If the value is Deploy or Retract, it is secure, and you should skip the rest of this
section. If the swingarm is is Retracted,Unpinned, then engaging the docking pin
will secure it at the Retract position:

modify -s k1dm3 DOCKPOS=Engage

Otherwise, the swingarm position needs to be corrected. Put the telescope elevation
to 67◦ before proceeding. When the telescope is at 67◦, initialize the entire module.
Reminder: this will finish by doing a move to the current tertiary destination:

modify -s k1dm3 M3AGENT=Init

This initialization step can fail if the actuators are significantly out of alignment. If
so, follow the procedure 7.3.10 to recover.

8. At this point, the system should be fully operational. Check the status indicators on
k1dm3mon gui’s tabs. If any are not green checks, inspect the contents to determine
additional actions.

7.5 SASS Temporary Override Procedure

When an E-stop has been triggered by the SwingArm Safety System (SASS) Galil, you
may need to temporarily override the SASS configuration to permit motion out of the E-
Stop condition. Section 7.3 discussed specific issues that you may need to handle using a
temporary override; this section provides the details of the procedure.

Each of the settings that you can override is set in a Galil variable. The three settings
that you might reasonably need to override are in the following variables:

Xdifmax The maximum allowed difference between the two absolute encoder positions.
Problem indicated by: ENC AGREE = No.

LoOff The maximum allowed distance beyond the zero-point in the V-blocks. Problem
indicated by: ENC INRANGE = No and ARM x RAW < 0.

UpOff The maximum allowed distance beyond the normal retract position. Problem indi-
cated by: ENC INRANGE = No and ARM x RAW > 399300.

As described in section 8.3, the safety RIO operates in isolation. The k1dm3saf dis-
patcher is a custom application (not a galildisp instance) that listens for UDP messages
from the safety RIO, but doesn’t have the ability to send any message to the RIO.

To execute a temporary override, do the following from the instrument host, k1dm3server :

1. % telnet k1dm3-galil-safety

Press Return a few times to get the Galil’s colon prompt, then adjust the
necessary limits. Enter one or more of these on separate lines:
Xdifmax=xxx and/or LoOff=xxx and/or UpOff=xxx

This will immediately affect the running code, and the problem should clear. Do not
exit this telnet session yet.

58

ver 3.7b 7.5. SASS TEMPORARY OVERRIDE PROCEDURE

2. The E-Stop should now be clear. Cycle the motor power. (This will clear an “Amplifier
Fault”, if still showing in SWINGARMXMV, and in any case power must be on for the next
step.):

modify -s k1dm3 SWINGARMMOO=Off

modify -s k1dm3 SWINGARMMOO=On

3. Set the motor encoders from the absolute encoders:

modify -s k1dm3 SWINGARMCAL=Home

4. Align the actuator arms:

modify -s k1dm3 ALIGNARMS=xxx

Arm B will move to align with Arm A. Here, xxx is any amount greater than k1dm3 ’s
ARMDIFF keyword. If the actual difference exceeds xxx , ALIGNARMS will refuse to
proceed.

5. Check that k1dm3 ’s ARMDIFF is now small — it should be zero, but any amount less
than 100 is fine.

6. If either arm has overshot the V-block position or the retract position, move it to the
nearest position by commanding

modify -s k1dm3 SWINGARMNAM="Deployed,Unclamped" or

modify -s k1dm3 SWINGARMNAM="Retracted,Unpinned"

7. Reset the safety system to the normal limit: In the telnet session (start a new one if
you exited the previous one), type

RS

to reset the safety Galil RIO and revert to its normal burned-in configuration. Your
telnet session will be immediately terminated by the safety Galil.

59

Chapter 8

Swingarm Safety System
(SASS)

8.1 Background

The K1DM3 swingarm depends on two actuators moving in close synchrony. The actuators
can each apply approximately 2000 pounds of force, which is sufficient to permanently
deform the swingarm if the two actuators are much more than a few mm out of alignment.
Normally, this is enforced by configuring the B actuator to be slaved to the A actuator, using
the Galil “gantry” mode. However, if something happens to cause the slaving to fail, allowing
actuator A to slew at full speed (40,000 motor encoder counts/s, or ∼ 12.4 mm/s) while
actuator B is stopped, the actuators would quickly become severely misaligned. This section
discusses the safety system that provides an extra layer of protection against problems that
can lead to severe actuator misalignment.

8.2 The Safety Monitor and Outputs

K1DM3 protects itself against several kinds of inter-actuator problems by using an inde-
pendent, standalone Galil RIO that monitors the Renishaw absolute encoders mounted on
each of the actuators. Code on board the Galil runs in a loop at about 50 Hz, and as
long as conditions remain nominal, the loop toggles a a heartbeat signal; if there is any
problem, the heartbeat is not toggled. Should the heartbeat signal stop, both the Elec-
tronic Lock-Out (ELO) and Abort signals are activated on board the swingarm Galil (see
the Galil DMC-40x0 manual (Galil Motion Control, 2016), and K1DM3 electronics manual
(Sandford, 2019), which immediately stops the actuators. From full speed, the actuator
brakes will halt the swingarm within 3 mm.

The following checks are applied:

• The actuators must stay within 0.5 mm (2048 Renishaw counts) of each other. This is
deliberately several-fold less than the tolerable “several mm,” so that the system can
handle several failed efforts to recover from a serious problem, without ever reaching
the absolute maximum safe difference.

• The absolute encoders must be within the limits.

60

ver 3.7b 8.2. THE SAFETY MONITOR AND OUTPUTS

• Each absolute encoder has an error signal, to indicate a problem with reading the
position. This signal must not be active.

• The actuator speed must be kept slow when approaching the v-blocks or docking
point. The slow speed limit is 5000 motor counts/sec, or 6350 Renishaw counts/sec.
Otherwise, the speed limit is 40000 motor counts/sec, or 50800 Renishaw counts/sec.
(The actual speeds commanded by the control system are 3000 motor counts/sec for
the slow speed, and 25000 motor counts/sec for the fast speed.)

The Galil RIO reads the encoders at fixed 25 ms intervals, whereas the safety loop is
updating at 20 ms intervals. Since the safety system computes the current speed of the
swingarm by differencing successive encoder values (and dividing by 25 ms), roughly one in
eight speed estimates will erroneously be computed as zero. The safety system requires two
above-limit estimates in a row before it triggers an overspeed event, so the worst-case time
to trigger is 60 ms: one erroneous zero-speed measurement, then two successive overspeed
measurements.

When a problem is detected, the Galil code sets a corresponding output bit and immedi-
ately branches back to the start of its monitor loop. That short-circuits the following tests
– for example, if the encoders don’t agree with each other, the tests for in-expected-range
and speed-ok are not done. The sequence of tests is:

• If either encoder’s status signal is indicating error, clear the encoders-OK bit and
branch to start of monitor loop.

• Otherwise, if the encoder values disagree with each other, clear the encoders-agree bit
and branch to start of monitor loop.

• Otherwise, if either encoder is out of its valid range, clear the encoders-in-range bit
and branch to start of monitor loop.

• Otherwise, if the encoder speed is above threshold, clear the speed-is-ok bit and branch
to start of monitor loop.

• Otherwise, set the all-is-ok bit.

In addition to the heartbeat signal that keeps the Abort and ELO signals from triggering,
the safety system provides six output bits to indicate status directly to the swingarm control
Galil. The following Galil output bits are used:

1: High if Renishaw encoders agree with each other.

2: High if encoders are within the expected range.

3: High if within speed limit.

4: High if swingarm is in V-block slow zone.

5: High if swingarm is in retract slow zone.

6: The heartbeat signal.

7: Combined all-is-ok output. Although the on-board firmware sets this output bit, it is
not wired to anything.

61

CHAPTER 8. SWINGARM SAFETY SYSTEM (SASS) ver 3.7b

8.3 k1dm3saf

All safety functions are implemented entirely on board the system’s Galil RIO 47142, and
do not depend on any external software. A KTL service, k1dm3saf, is provided to moni-
tor the system’s status and the Renishaw absolute encoder values, but never initiates any
communications with the RIO, which stands alone in splendid isolation.

The RIO sends its “Data Record” (see the DR command in the RIO-47xxx manual) every
second to UDP port 1222 on the instrument host, 192.168.23.100, and sends additional
messages with the current speed (computed by differencing successive encoder positions),
maximum speed in the past second, count of overspeed conditions, and some timestamps.
The k1dm3saf dispatcher listens for the UDP messsages from the Galil, and reports the
status via its keywords (see chapter 13 for the complete keyword list). The RIO doesn’t
care if anyone is listening for these messages, so it is unaffected by whether the k1dm3saf
service is running.

In addition to reporting the safety system status, the k1dm3saf service provides the
Renishaw encoder absolute positions in one pair of keywords, plus a second pair of keywords
that give the absolute encoder values in the equivalent swingarm actuator motor encoder
values. This allows the swingarm actuators to be “homed” without any motion, by simply
reading the keyword values from k1dm3saf, and setting the correct motor encoder values in
the swingarm Galil.

When investigating an Electronic Lock-Out triggered by the safety system, the most
useful keywords are probably the following:

• CT NOTOK. This counts the number of times that one or both absolute encoders have an
active error or warning flag. The counter increments each time the combined encoders’
error and warning flags change from all-inactive to any active, and is reset to zero each
time the RIO is powered up.

• CT DISAGREE. This counts of the number of times that one or both absolute encoders
have no active error or warning flags, but the encoders disagree with each other. The
counter increments each time the encoders go from in-agreement to not-in-agreement,
and is reset to zero each time the RIO is powered up. During power-up, it is common
for the system to briefly pass through an encoders-disagree state during initialization,
and therefore the apparent startup state is typically CT DISAGREE=1, instead of 0.

• CT RANGE. This counts of the number of times that the absolute encoders agree with
each other, but are not in the valid range for the swingarm. The counter increments
each time the encoders transition from in-range to not-in-range, and it is reset to zero
each time the Galil is powered up.

• CT SPEED. This keyword is a counter of the number of times that an over-speed con-
dition is encountered. It is reset to zero each time the Galil is powered up.

• ENCBAD0, ENCBAD1. Whenever one of the above conditions occurs and the correspond-
ing counter is incremented, the encoders’ “V-block distances” are latched into these
keywords. That is, the latched value is the distance of the encoder from its nominal
in-V-block position, so it ranges from 0 counts when in the V-block to approximately
507,000 counts when retracted. (Due to the encoders-disagree state that is encoun-
tered during initialization, as described under CT DISAGREE, above, these will typically
have a non-zero startup value, which you should ignore.)

62

ver 3.7b 8.3. K1DM3SAF

The k1dm3saf service also provides enumerated keywords that show the state of the
encoders at the current moment in time: ENC AGREE, ENC INRANGE, ENC OK, and SPEED OK

correspond to the counter keywords CT xxx . However, error conditions can be transient,
not persisting long enough to be captured in a keyword value. For example, an overspeed
condition can occur, triggering an ELO, and the swingarm brought down to a stop (or just a
safe speed) before the safety RIO’s next broadcast of state data to the k1dm3saf dispatcher.
As a result, the current-state data would not show that an error is active, whereas an error
counter, having incremented, would show that the error occurred.

63

Chapter 9

The K1DM3 Monitor

The k1dm3 KTL service is supplemented with a monitor daemon, k1dm3mon, that raises an
alert when any of a range of possibly undesirable conditions occurs. For certain especially
unsafe conditions, it also issues corrective commands to k1dm3.

The k1dm3mon service uses the emir application (Deich, 2014), which provides a stan-
dardized package for monitoring and responding to any conditions of interest.

As of Oct. 2018, the following checks are made:

Drum

• Alert if the drum dispatcher has a problem connecting to its Galil.

• Alert if slews are not done a maximum speed.

• Alert if the motor is on for more than 3 minutes.

• Alert if the detent disengages while the air supply is engaged; in which case also
command the detent to re-engage, and set a software lockout forbidding rotation.

• Alert if the preferred move direction isn’t Quick (shortest time).

Swingarm

• Alert if the swingarm dispatcher has a problem connecting to its Galil.

• Alert if either motor is on for more than 3 minutes.

• Alert if a motor-overtemp error occurs

• Alert if the swingarm is being deployed at other than El=67◦.

• Alert if one of the SwingArm Safety System halt-motion conditions is tripped.

• Alert if the swingarm is in the tower, and is neither in the Retract nor Deploy
positions, nor in the midst of a commanded motion.

64

ver 3.7b

Dock

• Alert if the dock dispatcher has a problem connecting to its Galil.

• Check that the dock is engaged if the swingarm is retracted.

• Check that the dock is retracted while the swingarm is in motion.

• Check that the swingarm dispatcher is the normal version that controls the dock,
and is not the special engineering version that ignores the dock.

Other

• Monitor the air pressure at the inner drum.

• Monitor sources of heat:

– Alert if any controllable power supply (48V drum motor power, 48V swing-
arm actuator power, or 24V inner drum power) is on for at least 5 minutes.

– Alert if any solenoid control bits are in an active state for at least 5 minutes.

• Alert when a software lockout is active.

65

Chapter 10

Galildisp Configuration

All of the k1dm3 service’s dispatchers are instances of galildisp. Galildisp is a general-
purpose Galil dispatcher; each instance of galildisp controls a single Galil DMC-xxxx or
RIO-xxxxx.

Galildisp is mostly driven by configuration files, along with custom code as needed to
supply functionality not built into the application. This section explains the layout and
use of k1dm3 ’s configuration files, so that you can understand its behavior and modify it if
desired.

10.1 Major Elements of Control

10.1.1 Motor Axes and Digi-Axes

The main unit of control in galildisp is the axis. Every axis has a name, and a collection of
standardized keywords that begin with that name and end with a 3-letter suffix.

Galildisp axes come in three flavors:

1. Motor axes directly represent actual Galil axes, and are named A..H, in accordance
with the usual Galil nomenclature. For example, the K1DM3 rotation motor is con-
nected to Galil axis A, and is named the ROTAT stage. It has keywords such as ROTATENC
(the motor encoder value), ROTATRAW (the ”raw” load encoder value), and ROTATSPD

(current speed in load encoder counts/sec).

2. Digi-axes represent components that are controlled with digital outputs, and pro-
vide feedback through digital inputs. They are named D0, D1, D2. . . . For example,
K1DM3’s rotation detent mechanism (digi-axis D1, stage name DETENT) uses two out-
put signals to drive the detent mechanism, and two input switches to indicate if its
fully retracted or fully engaged. The DETENTPOS keyword is used to both set and
report its position.

3. Combo-axes, or assemblies, are collections of other axes, which can be motor axes,
digi-axes, and/or other combo axes. Their axis names are C0, C1, C2,. . . . Their
status keywords are computed from the status of their component axes. Some of
their actions are automated (e.g. a stop command sent to the assembly’s aaa STP

keyword is simply repeated to each component xxx STP keyword). Others actions are

66

ver 3.7b 10.1. MAJOR ELEMENTS OF CONTROL

implemented using rules in a configuration file (e.g. a position keyword of an assembly
is generally implemented by defining rules in a configuration file that give a sequence
for commanding other keywords).

10.1.2 Non-Axis Keywords

Many analog and digital I/O keywords don’t belong to any axis. Examples include temper-
ature keywords that report data from analog temperature sensors, and digital outputs that
turn on or off power supplies.

Compound keywords are computed from combinations of other keywords, such as the
ACTIVATE keyword that reports whether the module is in one of the standard configurations
for rotating, operating the swingarm, or observing.

10.1.3 Sequencers

A sequencer keyword is used to issue sequences of commands to other keywords — it’s
comparable to using an ordinary standalone shell script to issue modify commands from the
command line, and indeed it may be implemented using a shell script. Sequencer keywords
are either assembly or compound keywords, because those are the galildisp types that can
execute user-defined sequences of modify’s of other keywords. When a ktl write (modify) is
invoked on a sequencer keyword, its user-defined command sequence is executed.

The configuration file either directs the dispatcher to follow simple “modifyRules” in-
structions placed in the configuration, or directs the dispatcher to invoke an external script
specified in the configuration file.

A sequencer keyword has significant advantages over a simple standalone shell script,
because the sequencer keyword is acting as part of the dispatcher, rather than acting as a
client. Its advantages compared to a standalone shell script include:

• If the sequencer keyword is invoked by a manual action (e.g. a hand paddle) all modify’s
from the sequencer script will also run in a manual context, rather than being locked
out because remote control has been locked out by the hand paddle.

• Status keywords can be automatically filled in by galildisp, including copying the
script’s stdout text. This greatly simplifies writing a sequencer script that is fully part
of the dispatcher. Other clients can monitor the progress of the squencer script, by
monitoring its optional message and error keywords.

• Cancellations can be demanded by galildisp, in response to a new countermanding
keyword request. In contrast, galildisp doesn’t “know” when there is a standalone
script issuing commands and doesn’t have a way to tell it to stop.

• Command timeouts can be enforced by galildisp, including the ability to kill an external
sequencer application and cancel any ongoing modify’s.

• Galildisp runs each external application under its own session id, so that it’s easily
managed and signalled as a unit.

67

CHAPTER 10. GALILDISP CONFIGURATION ver 3.7b

10.2 Dispatcher and Controller Information

Information about dispatcher x (x = 1, 2, 3) is available in the keywords beginning DISPx ;
information about the Galil controller is available in the keywords beginning CTRLx .

For the most part, galildisp dispatchers operate independently with limited interdepen-
dence on each other. However, all dispatchers for a given service maintain a “back channel”
communications link to support the following kinds of messaging:

• A dispatcher can monitor other dispatchers’ keywords, as needed. For example, the
ACTIVATE keyword is served by Dispatcher 2, but its value is determined by the val-
ues of keywords from all three dispatchers, so Dispatcher 2 monitors the necessary
keywords from the other dispatchers.

• A dispatcher can execute an internal modify of any other dispatcher’s keywords, which
it does by sending a modify request across the back channel. For example, the M3AGENT
sequencer is provided by Dispatcher 2, but has to issue modify commands to keywords
of all dispatchers.

• Assemblies need to monitor state data for all their component stages. When an as-
sembly is composed of stages from several dispatchers, the other dispatchers transmit
the essential state data across the back channel.

This cross-dispatcher monitoring and modifying of keywords is handled transparently by
the dispatchers, so that you can use them almost as easily as purely-local keywords.

10.3 Configuration Files

Each galildisp instance is configured using two sets of files: a dispatcher configuration file
named svc dispatch n.conf (e.g. k1dm3 dispatch 2.conf), and XML files that define the
keywords used in the service. The dispatcher .conf files are used only by the dispatcher,
but the XML files are needed by both the dispatcher and the KTL client library.

For historical reasons — namely, galildisp dates back to a time when XML files weren’t
used by the KTL client library — the dispatcher mostly uses configuration files that are
generated at build time from the XML, rather than directly reading the XML. Here, we
focus on the files you may need to edit, and ignore the generated files that litter the build
directories.

K1DM3 uses two flavors of macro substitution. Files ending in .sin are macro-substituted
using $RELDIR/etc/subst.tcl. (This is not a Tcl-specfic tool; the .tcl suffix is used merely
to distinguish this application from similar commands named subst.) Subst.tcl extracts
definitions from the Makefile and substitutes them into the .sin file. The rule for converting
foo.sin into foo is built into the Kroot build system, so it isn’t explicitly called out in the
Makefiles. The second kind of macro substitution invoked by the K1DM3 Makefiles is to
apply $RELDIR/bin/wapp to each file with a .in suffix. Wapp uses macro definitions from
one or more .defs files.

Wapp is a flexible and powerful tool, and a detailed description of it is beyond the scope
of this document. A complete man page is available by invoking “wapp -H.” However, when
reading or editing the .defs files, you should at least know that it can switch on the fly
between C-style (#define var value) and Makefile-style (var = value) macro definitions;
by default it applies variable substitution to each item matching $(var), and expression

68

ver 3.7b 10.3. CONFIGURATION FILES

substitution to each item matching $((...)). In some places, discussed below, the use of
$(var) conflicts with similar expression parsing built into galildisp, and in that case we
adjust wapp to use $.var. instead.

Finally, in a few cases, there are files named foo.sin.in, in which case wapp is applied
to generate the foo.sin file, and then subst.tcl is used to generate the final file foo.

10.3.1 Template and Definition files

Most of the XML files are generated by doing macro-substitution into template files. This is
for several reasons. First, XML is notoriously verbose, and unpleasant to maintain entirely
by hand. Second, when galildisp is modified in ways that affect the keyword XML, it is far
easier to update a single template file, than to hand-edit each affected XML file. Third, the
same value may be used in many configuration locations — including both the .conf and
XML files — and we only define each value in a single .defs file.

Warning: don’t lose your edits by editing a generated file, which will of course eventually
be overwritten. If you see files named foo and foo.in, it’s pretty obvious that the former is
generated from the latter. More precisely, any file that is not stored in svn (use “svn info

file ” to check) is either a generated file or some bit of cruft, and is not one of the files you
should be editing to modify the k1dm3 configuration.

10.3.2 The .defs and XML files

The XML and .defs files are found in svn/kroot/kss/K1DM3/k1dm3/xml/. XML entries
that are intended to be used only by the dispatcher are either in the dispatcher subdirec-
tory, or are placed in serverside nodes inside the main XML entries. The XML files follow
the rules of the dtune KTL client library. You do not need to directly edit any XML files in
order to modify a k1dm3 dispatcher XML configuration; you need only edit the .defs files,
or, less often, the corresponding .xml.in files.

Generally, each axis has its own well-commented .defs file, and the Makefile applies the
definitions from FOO.defs to FOO.xml.in, to generate FOO.xml. As a general rule, any file
xml/Template/FOO.xml.in is simply a copy of a galildisp/Template file.

Most of the per-axis files in turn include the Common.defs file. If you are uncertain
precisely how an XML file is generated, simply delete it and type “make” to recreate it. If
you want to know more about exactly what wapp is doing, you can hand-execute the wapp
command, adding one of the options -ed (print expanded variable definitions), or or -eed

(print expanded variable definitions plus expressions).

This distributed collection of configuration data can sometimes make it difficult to find
the original definition for a value, and it sometimes takes some judicious use of grep and file
inspection to find the source of a definition.

10.3.3 The .conf files

In addition to the XML files, each galildisp instance needs its svc dispatch n.conf file.
The directory svn/kroot/kss/K1DM3/k1dm3/configs/ contains the source for these files.

The Makefile generates the .conf file for dispatcher n by applying wapp to each file
k1dm3 dispatch n.conf.in. This pulls in many xxx.cfg.in files — one xxx.cfg.in file
for each axis, and compound keywords are also configured in .cfg.in files. Configuration

69

CHAPTER 10. GALILDISP CONFIGURATION ver 3.7b

blocks that are re-used in several places (such as the four clamps, which share a great deal
of configuration), are further split out into sub-.cfg.in files.

10.4 Custom Dispatcher Code

K1dm3 has some features that are not built into galildisp, and those are handled in custom
code. For example, the interactions with TCS are entirely handled in custom code.

Custom code files are in svn/kroot/kss/K1DM3/k1dm3/dispatcher/, and are named
k1dm3 dispatch n.tcl file.

70

Chapter 11

Utility Programs

The K1DM3 software is supplemented with a few utilities to help with monitoring or trou-
bleshooting.

11.1 k1dm3.summarize

The k1dm3.summarize utility provides a quick look at recent operations of K1DM3. By
default, it shows a brief summary of the sequencer actions since noon yesterday, in which
each entry shows the start time, end time, and position, and any errors that caused the
sequencer to throw an error. If a sequence includes moving the swingarm, then telescope
elevation is included in the summary. The summary of sequences is followed by a very terse
list of the sequence of just the positions reached by the sequencer. Finally, at the very end,
is a single line that indicates the amount of compression in the summary: the number of
lines read from the keyword history database, the number of output lines generated from
that input, and the number of additional output lines generated by reading supplementary
data.

It is a simple-minded tool, using the M3RUN keyword to show when the sequencer was
running, and the dcs1 keywords TERT{INIT,MOVE,HALT,ABRT,STBY}C to indicate what ac-
tion was executing. If the action was triggered by a direction invocation of M3AGENT,
k1dm3.summarize is not sophisticated enough to figure that out.

Example 1. The basic output for a night looks like this:

% k1dm3.summarize

2018-12-29T14:07:50.72 Begin action=Init Start=Dest=Cass

2018-12-29T14:07:50.98 Begin EL=0.00

2018-12-29T14:08:09.63 End EL=0.00

2018-12-29T14:08:09.63 End action=Init Position=Cass

2018-12-29T18:01:32.65 Begin action=Init Start=Dest=Cass

2018-12-29T18:01:32.92 Begin EL=45.00

2018-12-29T18:01:50.08 End EL=45.00

2018-12-29T18:01:50.08 End action=Init Position=Cass

71

CHAPTER 11. UTILITY PROGRAMS ver 3.7b

2018-12-30T03:59:01.46 Begin action=Stby

2018-12-30T03:59:02.93 End action=Stby Position=Cass

~ Position Summary ~

2018-12-29T14:08:09.63 Cass

324/10 + 4

At the end of each sequence, the summarizer prints warning(s) if any of the following are
true: an inner drum power supply was left on; the outer drum 48V supply was left on; there
are active solenoid outputs; the air supply was left connected; or there is a software lockout.
Note that it is normal, and harmless, to have one or more warnings when a move or init
sequence is cancelled by another sequence: the conditions will immediately be corrected by
the next sequence. It is not normal for any of these conditions to persist for an extended
time, and the summarizer will exit with non-zero exit status if any warnings are active at
the end of the summary period.

Options: The option -h prints help information. The -s option suppresses the main
body of output, printing only the very terse position summary. The -t option prints the
terse position summary at the top, before the main body, which is a nice layout for emails.
The -n option stops output after encountering n End-of-Sequence markers. The -v option
adds the M3MSG keyword to the listing. Additional -v’s add yet more keywords to the listing.

The data are extracted from the keyword history using gshow, and you can use its -date
and -window options to adjust the selected date range; see gshow -h -date and gshow -h

-window for their usage details.

Example 2. Here is a sample from a move that failed. Note that the high-level error
information is included in the summary:

% k1dm3.summarize -date 2018-12-19T10:00 -date "dec 19 10:02:30"

2018-12-19T10:01:50.86 Begin action=Move Start=Cass, Dest=RNas

2018-12-19T10:01:51.11 Begin EL=67.00

2018-12-19T10:02:09.20 ERR_DOCK_NOT_DISENGAGED /

2018-12-19T10:02:10.27 ERR_CHILD / Error in program: child process exited abnormally (1)

2018-12-19T10:02:10.27 End EL=67.00 ELMIN=67 ELMAX=67

2018-12-19T10:02:10.27 End action=Move Position=Unknown

Adding a -v option makes the output more verbose, by including the same information that
would have been displayed in Tcsgui during the move.

Example 3. Adding verbose flag -v:

% k1dm3.summarize -v -date 2018-12-19T10:00 -window 2.5min

2018-12-19T10:01:50.86 Begin action=Move Start=Cass, Dest=RNas

2018-12-19T10:01:51.72 ACQUIRING: Dest is rnas

2018-12-19T10:01:53.67 SLEWING: Activate Swingarm

2018-12-19T10:01:54.19 SLEWING: check detent

72

ver 3.7b 11.1. K1DM3.SUMMARIZE

2018-12-19T10:01:54.38 SLEWING: check air

2018-12-19T10:01:55.98 SLEWING: Inner drum power

2018-12-19T10:02:01.52 SLEWING: Unsuspend swingarm

2018-12-19T10:02:01.75 SLEWING: Unsuspend Swingarm

2018-12-19T10:02:04.46 SLEWING: Disengage dock

2018-12-19T10:02:06.12 SLEWING: Set swingarm from abs encoders

2018-12-19T10:02:07.61 SLEWING: Slave actuators

2018-12-19T10:02:08.30 SLEWING: Actuator power

2018-12-19T10:02:08.82 SLEWING: Actuator init

2018-12-19T10:02:09.05 SLEWING: SWINGARMINI : fail

2018-12-19T10:02:09.16 FAULT: SWINGARMINI : fail

2018-12-19T10:02:09.20 ERR_DOCK_NOT_DISENGAGED /

2018-12-19T10:02:09.36 FAULT: ACTIVATE : fail

2018-12-19T10:02:09.63 FAULT: Swingarm not activated

2018-12-19T10:02:10.27 ERR_CHILD / Error in program: child process exited abnormally (1)

2018-12-19T10:02:10.27 End action=Move Position=Unknown

If you use two -v flags for very verbose output (-vv or -v -v), the output will include
all the normal sequencer messages that go into keywords ACTIVMSG and M3MSG, plus the dcs1
keywords TERTERRS, TERTSTST, and TERTxxxx C:

% k1dm3.summarize -v -v -date 2018-12-19T10:00 -window 2.5min

2018-12-19T10:01:50.74 TERTDEST: rnas

2018-12-19T10:01:50.84 TERTMOVEC: yes

2018-12-19T10:01:50.86 M3MSG: m3.move: begin

2018-12-19T10:01:50.86 M3MSG: $RELDIR/sbin/k1dm3/m3.move TERTMOVEC 1 YES Yes

2018-12-19T10:01:50.86 M3RUN: true

2018-12-19T10:01:50.86 Begin action=Move Start=Cass, Dest=RNas

2018-12-19T10:01:50.93 M3MSG: m3.move (3265) executing on behalf of TERTMOVEC

2018-12-19T10:01:51.11 TERTMOVEC: no

2018-12-19T10:01:51.20 M3MSG: Starting at k1dm3.TERTPOSN=Cass

[...many elided lines...]

2018-12-19T10:02:08.82 TERTERRS: Actuator init

2018-12-19T10:02:08.85 ACTIVMSG: setting SWINGARMINI = yes

2018-12-19T10:02:08.90 ACTIVMSG: modify SWINGARMINI="yes" failed: ERR_DOCK_NOT_DISENGAGED

2018-12-19T10:02:08.96 ACTIVMSG: setDCSstatus (dcs1): "216" / "SWINGARMINI : fail" / "fault" / "FAULT" silent

2018-12-19T10:02:09.05 TERTERRS: SWINGARMINI : fail

2018-12-19T10:02:09.16 TERTSTST: FAULT

2018-12-19T10:02:09.20 ACTIVMSG: Error in program: child process exited abnormally

2018-12-19T10:02:09.20 ACTIVMSG:

2018-12-19T10:02:09.20 M3ERM: ERR_DOCK_NOT_DISENGAGED /

[...more elided lines...]

2018-12-19T10:02:10.27 M3RUN: false

2018-12-19T10:02:10.27 End action=Move Position=Unknown

You can add a third -v for yet more verbose output.

73

CHAPTER 11. UTILITY PROGRAMS ver 3.7b

Finally, you can add additional k1dm3 keywords to the end of the k1dm3.summarize
command line, and these keywords will also be printed. In the above example, where the
docking pin failed to disengage correctly, you might want to repeat the command with all
DOCK* keywords added to the output:

% k1dm3.summarize -date 2018-12-19T10:00 -window 2.5min DOCK%

[...]

11.2 k1dm3.status.email

This simple shell script is designed for use as a cron job. It is invoked as

k1dm3.status.email [-x] addr ...

It runs k1dm3.summarize and emails the results to the addresses given on the com-
mand line. The -x option suppresses the email except when the summarizer finished with
warning(s) about power supplies or solenoids left active, or an active software lockout.

11.3 k1dm3.io

This little one-liner script simply invokes the service.io application, which in turn is just
another interface to show and modify. It’s useful because it simplifies a common engineering
usage when digging into a running galildisp instance.

Galildisp has a number of keywords that accept a command or request by writing the
keyword, and then the response is retrieved by reading the same keyword. For example,
you can write Galil code directly to the Galil, by modifying the keyword CTRLx AUX. The
dispatcher will copy the string to the Galil, and all text received from the Galil in the next
20 ms is assumed to be a response to that command, and is copied back into the CTRLx AUX

keyword, which can then be read from the keyword.
If you use k1dm3.io kwd..., it simply invokes show to display the keywords. However,

if you use

k1dm3.io kwd =’value ’

then the value is written to the keyword, k1dm3.io waits 100 ms for a response, and then
reads the updated keyword value. This is a very convenient way to interact with the Galil,
or to do debugging work with a running dispatcher.

Example:

% k1dm3.io CTRL1AUX=’MG "hello"’

modify -s k1dm3 CTRL1AUX=’MG "hello"’

setting CTRL1AUX = MG "hello" (wait)

hello\n:

(The italicized lines are printed by k1dm3.io and modify ; the text “hello\n:” is the response
from the Galil, which we can read from keyword CTRL1AUX.)

See service.io -h for more information on how to use this command.

74

Chapter 12

k1dm3 KTL Service Keywords

This section summarizes all the keywords provided by the k1dm3 KTL service. Additional
information — such as data type, data range, allowed values — is available using gshow to
query the keyword data, using its various help options.

The k1dm3 service is made up of three dispatchers:

• Dispatcher 1 controls the swingarm Galil.

• Dispatcher 2 controls the drum Galil.

• Dispatcher 3 controls the dock Galil.

12.1 Dispatcher Keywords

Each galildisp dispatcher has a set of about 25 standard keywords to describe the dispatcher
itself. (Some of these keywords aren’t used by the k1dm3 dispatchers, and they are basi-
cally just noise keywords. Sorry.) In the following keyword names, each x stands for the
dispatcher number (1, 2, 3):

DISPx BITGP Space-separated list of all “bitgroups” controlled by this dispatcher. For
k1dm3 , this is always empty: k1dm3 has no bitgroups.

DISPx COMBO Internal to galildisp, each assembly is modeled in a manner similar to a
motor axis. This keyword gives an alternating list of each assembly axis name and its
assembly name.

DISPx COMBX List of top-level assemblies: assemblies that are not themselves components
of other assemblies.

DISPx DIGI Space-separated list of all digistages controlled by this dispatcher.

DISPx MOTOR Space-separated list of all motor stages controlled by this dispatcher.

DISPx BCH Used at dispatcher startup, to set up the back channel communications between
dispatchers.

DISPx CLK Dispatcher clock: seconds since dispatcher began running.

75

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

DISPx DBG Dispatcher debug level. A KTL bitmask. Used for debugging galildisp itself.

DISPx DISABL Disables the StdStage system for controlling axes, and instead log each call.
Used for debugging galildisp itself.

DISPx DWIM A debug keyword: semantics change on a whim; it does whatever I want it to
do to help in debugging. Not for ordinary users.

DISPx ERR Dispatcher’s last error number associated with the overall dispatcher state.
Closely related to DISPx MSG.

DISPx HOM Name of host on which the dispatcher is running.

DISPx HUP Tells dispatcher to do typical SIGHUP-like actions, e.g. reload Raw/Ord/Nam
mappings from their config files. Recommendation: do not use this; instead, directly
write the stage RON keyword to perform updates (these will be automatically copied
to the runtime config file).

DISPx LDF A debug keyword: names a plain file to be source’d by the dispatcher. The path
is relative to $HOME/svcnam /dispnam ; the file must be owned by the same account
that is running the dispatcher; and the file must not be group or world writable.

DISPx LOG Dispatcher x log file name. For k1dm3, this is key:k1dm3-x log, which says
to look up the key in the the MUSIC services file; that file says the key’s value is
syslog:k1dm3-x [%p]:local6; this means to log using syslog(3), with facility LOCAL6,
and “program name” k1dm3-x . In turn, the syslog configuration file /etc/rsyslog.conf
says that messages with that program name are recorded in $KROOT/var/log/programname .
(Whew).

DISPx MSG K1DM3 dispatcher status message. Last status message associated with overall
dispatcher state, typically indicating communications status with its networked device.

DISPx NOTE A convenience keyword: a user can write anything of interest in this keyword.
Not used by the dispatcher itself.

DISPx PID Dispatcher x process id.

DISPx PSE When written with value n, the modify command waits (pauses) for n millisec-
onds, then returns. The dispatcher itself doesn’t pause; it’s provided to allow scripts
to pause in a way that can be interrupted just like any modify command.

DISPx REQ All modify requests for dispatcher x are recorded in this keyword as “kwd
binary-value”. This is done just before executing the request. By querying the key-
word history database, one can retrieve a timestamped record of all commands to the
dispatcher.

DISPx RSS The RSS keyword holds the current memory Resident Set Size, as returned by
getrusage(2).

DISPx SCK This keyword is incremented and broadcast following all other keyword updates
that are triggered by the Galil’s most recent data record. Thus, when this keyword is
broadcast, all other keywords are in sync. (SCK == Self-Consistent Keywords).

76

ver 3.7b 12.2. CONTROLLER KEYWORDS

DISPx SHUTDN Shutdown command. Tells dispatcher to exit, after stopping any software
running on the Galil.

DISPx STA Overall dispatcher software status. Not for showing per-stage hardware, elec-
tronics, or on-board Galil trouble. Typically used for showing network communications
status or other issues affecting overall operation of dispatcher. It always transitions
to Finalized, then Ready as its final steps after connecting to the Galil.

DISPx SUSP When written with a non-blank string, this tells the dispatcher to suspend
communications with Galil, and reject stage and I/O modify commands. When written
with a blank string, tells dispatcher to resume normal functioning. The DISPx STA

keyword will show Suspended when dispatcher is suspended.

DISPx THREAD A debugging keyword. Galildisp uses threads of execution on board the
Galil. This keyword is a space-separated list of alternating Galil thread number and
the dispatcher’s terse thread name.

12.2 Controller Keywords

Each galildisp dispatcher has the following set of keywords to describe the state of the Galil
controller. In the following keyword names, each x stands for the dispatcher number (1, 2,
3):

CTRLx ADR Controller x motor controller address (IP address or path).

CTRLx AUX K1DM3 Controller x auxiliary I/O method. Anything written to this is copied,
verbatim, to the Galil; anything read in response to this is returned in this keyword.

CTRLx CLK Galil Controller x pseudo-clock: the last-received value of the sample counter
of the Galil.

CTRLx ERR The last error number associated with the Controller x state. Closely related
to CTRLx MSG.

CTRLx GSS The GSS keyword provides supplementary status info gleaned from periodic
polling of the Galil. For k1dm3, this is used to test and report if the Abort input is
active. Ordinary users don’t need to pay attention to CTRLx GSS, because the keyword
value is monitored by the standard per-stage reporting keywords.

CTRLx MSG The last status message associated with overall controllerx state. Closely related
to CTRLx ERR.

CTRLx THD The Controller x thread status. A Galil DMC-40x0 controller has 8 threads
available, and galildisp uses several of them. This shows the thread run state: the
value is a list of sta 0 sta 1 sta 2 ... sta 7, where sta i is 1 [0] according as the thread
is [is not] running. Primarily for debugging the dispatcher.

77

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

12.3 Digi-Axis Keywords

Stage Prefixes: DETENT, AIRSUPP, CLAMP x

A digi-axis stage dax has up to 18 standard keywords. The most important keyword is
dax POS, which is used to command and report the stage position. Other important keywords
are dax XMV, which reports any reasons that the stage is forbidden from moving; and dax ERR

and dax ERM, which report any error code and error message.
The full set of keywords is:

dax CMT An arbitrary comment, for use by clients of the service to exchange or record info.
Not used by the dispatcher itself. See also dax TAG.

dax CON Manual means a manual request is executing; otherwise the value is Auto.

dax DCC DisConnected Cables message. Blank if all cables are connected. Contains the
string “motion disabled” if the disconnected cable is required for stage motion.

dax ENG Enable engineering modes. Not used by the k1dm3 digi-stages.

dax ENT Time before engineering flags automatically clear.

dax ERM Error Message. The ERM keyword is tied closely to the ERR keyword: it is intended
to always have the error message associated with the error in ERR. Unlike the MSG

keyword, the ERM keyword is not intended to receive other, non-error messages.

dax ERR Last error number — it is the last KTL status value. Usually, this is closely related
to the MSG keyword.

dax LCK Software lock switch. If set to “unlocked”, motion keywords can be modified;
otherwise, they cannot. As a convenience, setting it to the empty string “” is shorthand
for “unlocked”.

dax LIM Stage “limit” status. A digi-stage’s position is determined by a collection of one
or more switches. If no switch is active, the value is “Not in a limit”; if multi-
ple switches are active, the value is “Err Multiple Active”; otherwise, the value
indicates which single switch is active.

dax MSG Message keyword. This keyword receives the same error messages that are copied
to the ERM keyword, but also receives non-error messages, such as status messages
while executing a sequence.

dax POS Name of the current ordinal position. Writing this value commands the digi-stage
to move to that position. Valid values are:

AIRSUPP stage: Disenagaged, Engaged

DETENT stage: Disenagaged, Engaged

CLAMP x stage: Closed, Open

dax PSE Provides a “pause” capability: when written with value n, does nothing for nms,
then returns. Identical to the DISPx PSE keyword; see the description of that keyword
for details. Only provided with DETENT; not provided with AIRSUPP or CLAMP x .

78

ver 3.7b 12.4. MOTOR-AXIS KEYWORDS

dax RCD (Remote Control Disablers). Blank if remote keyword control can be enabled; else
a terse explanation.

dax STA Control status: Locked, Ready, Moving, Fault

dax STP Request stop. When written with any value: aborts the sequence of output com-
mands that move a stage. When read: returns the last value written.

dax TAG An arbitrary comment, for use by clients of the service to exchange or record info.
Not used by the dispatcher itself. See also dax CMT.

dax TRG Name of the target position, updated each time a new value is written to the ORD

keyword.

dax XMV Shows all the reasons that this assembly (probably) cannot move. Some reasons
are not necessarily disabling — for example, a component stage may be in a limit that
prevents motion in one direction only.

12.4 Motor-Axis Keywords

Stage Prefixes: ROTAT, ARM A , ARM B

K1DM3 has three∗ motor stages — ROTAT, which is the drum rotation drive; and ARM A and
ARM B , which are the two swingarm actuators. In general, galildisp tries to treat all motor
axes alike, each with a large set of similar keywords, differing only in details. In practice,
the ARM B stage is always slaved to ARM A except when initializing the actuators, and only
the latter is commanded to operate the swingarm.

Each motor stage mot has an extensive set of over 50 keywords. The most important
keywords for controlling these stages include (a) mot INI and mot CAL, used for stage initial-
ization and homing the stage; (b) mot RAW, used for reporting and commanding the stage
position in “raw” encoder counts; (c) mot ORD and mot NAM, used to report and command
the stage position by ordinal number or name; (d) mot ERR, mot ERM and mot MSG, used to
report the stage’s error codes and messages; and (e) mot XMV, which reports the reasons the
stage is refusing to move.

The full set of keywords is:

mot AST. Amplifier status bits that affect this axis, as documented under the TA command
in the Galil DMC-40x0 manual. The Galil DMC-40x0 can report over-temperature,
under-voltage, over-voltage, over-current, and whether there is an active “electronic
lockout,” all on a per-amplifier (not per-axis) basis. Per axis, the DMC-40x0 can
report if there is a Hall sensor error, and whether it hit its peak current.

mot CAL. Calibration state. Setting CAL=reset forces the stage to be unhomed. Setting
CAL=homed causes a home sequence if the stage is unhomed.

∗ N.B. The k1dm3 service has an additional axis named ROTB. This is only used to provide an interface
to the rotation drive’s load encoder and index marks, which are, oddly, wired to the Galil’s B axis aux-
iliary encoder input, even though the rotation drive itself is otherwise wired to the Galil’s A axis. Most
ROTB keywords other than ROTBRAW and those that report the latching of the index marks are meaningless.
Furthermore, galildisp automatically copies the axis B load encoder position into the corresponding axis A
position, so for all normal work you can entirely ignore all ROTB keywords.

79

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

mot CED.
The ROTATCED keyword gives the difference between the actual rotation motor encoder
value and the expected motor value that is computed from the load encoder value:

ROTATCED = ROTATENC− ROTATENE

The swingarm actuator controls (ARM A and ARM B) only use the motor encoders —
the Renishaw absolute encoders are only read by the safety system — and so there
are no CED keywords for the swingarm.

mot CMT. An arbitrary comment, for use by clients of the service to exchange or record info.
See also mot TAG.

mot CON Manual means a manual request is executing; otherwise the value is Auto.

mot DCC DisConnected Cables message. Blank if all cables are connected. Contains the
string “motion disabled” if the disconnected cable is required for stage motion.

mot ENC

ROTATENC: For the rotation drive, this is the motor encoder value.

ARM x ENC: The swingarm actuators only use the motor encoder for control, and so
the motor encoder is used for both the ENC and RAW values (the swingarm’s Renishaw
absolute encoders are read and monitored by the safety system, but are not directly
connected to the swingarm Galil controller).

mot ENE

ROTATENE: For the rotation drive, this is the expected ENC value, as derived from the
RAW value, allowing easy comparison of the RAW and ENC values. When written, tells
stage to move to the RAW position such that ENE will have this value.

There are no ARM x ENE keywords, because the swingarm actuators only use the motor
encoder for control, and copy its value to both the ARM x RAW and ARM x ENC keywords.

mot ENG Enable engineering modes. This is a bitmask keyword containing engineering
flags. Whenever this keyword is written, the mot ENT (engineering timer) keyword is
re-initialized to 1200 s, and the the engineering flags remain active for the next mot ENT
seconds. The flags are as follows:

COMPINI Allows the stage to do its special initialization (see keyword mot INI), re-
gardless of the setting of the parent assembly’s asy ASM keyword. (Related: see
the parent assembly’s asy ENG.XASM flag.)

XHOME Allows the stage to move when unhomed, and suppresses any configuration
rules that would trigger automatic homing.

XLIMITS Allows motion if software limits exceeded. This tells galildisp to ignore the
configured soft limits for the axis, and to clear those limits from the Galil DMC-
40x0 when it next commands the stage.

XFORBIDDEN Allows motion into a “forbidden” range. For K1DM3, the only forbidden
range is a small region near the gap in the Renishaw encoder tape. Without this
flag, you aren’t allowed to set a target position that is within the forbidden range.

ZPX Enables use of the ZPX keyword. See that keyword for details.

80

ver 3.7b 12.4. MOTOR-AXIS KEYWORDS

XSAFETY When the XSAFETY flag is set, various safe-to-move checks are ignored, as
detailed in section 6.4. It should go without saying that this must be used with
great caution.

mot ENT Time before engineering mode self-clears. Can be written at any time to extend
the life of the ENG mode bits, up to the maximum allowed value of 1200 s.

mot ERM Error Message. ERM is tied closely to ERR: it is intended to always have the
error message associated with the error in ERR. Unlike MSG, the ERM keyword is
not intended to receive other, non-error messages.

mot ERR Last error number – it is the last KTL status value. Usually, closely related to
ERM and MSG.

mot GSC Stage stopcode, as reported by Galil’s SC command. This is an enum keyword, and
its binary value is the same as the Galil stopcode value. Note that several of Galil’s
so-called stopcodes actually indicate motion; see the related GSR keyword.

mot GSR Indicates whether the stopcode (GSC keyword) is a ’running’ or ’stopped’ indicator.
(For example, code 0 means motors are running independently, and code 60 means an
“electronic cam” sequence is running.)

mot GSS The GSS keyword provides supplementary per-axis status info gleaned from periodic
polling of the Galil, and that does not come through the Galil’s “data records.” It is
in a terse compact form, as it is generally meant for use by the dispatcher rather than
a user, but is nonetheless available in keyword form so that the data can be used for
engineering purposes during system development.

The keyword value is a string of alternating Galil command names and their values.
For example, the value for axis D might show:

BR 0 OE 1 BC 2 BX 3 BI -1 BA 1 ER 500

This means that the Galil variable BXD = 3, ERD = 500, and so on.

mot GST This is a bitmask keyword showing the stage’s axis status bits, pretty much exactly
as reported by the Galil in the data record. This is an engineering keyword that is
not used in normal operations.

mot GSW This is a bitmask keyword showing the stage’s axis switch bits, equivalent to the
value reported by Galil’s TS command. This is an engineering keyword that is not
used in normal operations.

mot GTE Current motor positioning error, equivalent to the value reported by the Galil’s
TE command.

mot LCK Software lock switch. If set to “unlocked”, motion keywords can be modified;
otherwise, they cannot. As a convenience, setting it to the empty string “” is shorthand
for “unlocked”.

mot LIM Stage limit status. A bitmask keyword that indicates if soft limits, primary limits,
and/or secondary limits are active. (The “primary” limits give the state of the Galil’s
limit inputs for the axis. The “secondary” limits, if provided, are additional signals
to indicate that the stage overshot its normal limit and had to be stopped by some

81

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

independent method such as directly motor power, bypassing normal Galil motor
commands.)

ROTATLIM The rotation stage has no limits, so this keyword has no particular value.

ARM x LIM Each swingarm actuator has limit switches, which are wired into the Galil
in the standard way. However, they should never trigger, because the swingarm’s
independent safety system (see chapter 8) will always trip before the limit switches
trip.

mot MAP Computes the mapping of a keyword value from one suffix to another. The use is
to write the keyword with a value of the form

fromval fromsuffix tosuffix
The next ’show’ command will return the mapping.

Example: modify -s k1dm3 ROTATMAP=’123 RAW VAL’

Result: RAW=123 -> VAL=0.615

Example: modify -s k1dm3 ROTATMAP=’LNas NAM RAW’

Result: NAM=LNas -> ORD=1 -> RAW=682235

mot MOD Sets the axis control mode: galildisp is modal, with the following permitted values:

Halt: Motion is not allowed; stops stage if it is already moving.

Pos: Stage may be commanded to a specific position.

Jog: Stage may be commanded to a specific speed.

Track: smoothly track a stream of PT or PVT demands. This mode is not used with
K1DM3.

mot MOE When read, reports whether the motor for this stage is left on (and servoing) or
off after a move.

When written, the value can be Off, On, or Default (use the configured-in default
value).

For all K1DM3 stages, the configured default value is Off.

mot MOO When read, reports whether the motor for this stage is currently on or off.

The MOO keyword can be written only in Pos mode. Setting the value to off will turn
off the motor; setting the value to on will turn on the motor and begin servo’ing to
hold position.

A value of off can be written at any time, and will have different effects depending
on the state of the stage, but will always result in the motor being turned off as soon
as possible.

Writing the MOO keyword does not change whether the motor is turned off at the end
of future moves — mot MOE will determine whether the motor is servo’ing or off at the
end of the next move.

mot MSG The MSG usually holds the error message associated with the ERR error code (as
does the ERM keyword), but it can also hold non-error messages from the dispatcher,
such as status messages while executing a sequence.

82

ver 3.7b 12.4. MOTOR-AXIS KEYWORDS

mot MSP By default, a stage does ordinary moves and homing at its configured-in maximum
speed (see the SPD keyword). The MSP keyword may be set to any value at or below
that maximum, and until it is reset, moves and homing will be limited to MSP.

Example: the SWINGARM assembly’s sequencer uses MSP to change the actuators to a
slow speed when entering the V-blocks or dock.

mot NAM When at a named position, this keyword gives the name, or Unknown otherwise.
The corresponding ordinal position is given by the ORD keyword, or −999 when not at
an ordinal position. The mapping between the raw, ordinal, and named positions is
given by the RON keyword.

See appendix A for tables of the drum and swingarm positions.

mot NPX The NPX (Named PrefiX) keyword is used for selecting subsets of named keywords.
It is not used by the k1dm3 dispatchers.

A client application can set the NPX value as a way of saying, “this subset of positions
should be displayed to users;” or the dispatcher can simplify the representation of
removable components by directly setting the NPX value to indicate which elements
are currently installed.

When translating from RAW to ORD or NAM, the dispatcher ignores any entries for which
the name doesn’t begin with the NPX value. When translating a request to move to
a new named position, if the requested name doesn’t begin with the NPX value, it is
automatically prefixed to the requested name.

mot ORD When at a named position, this keyword gives the ordinal value of that position,
or −999 otherwise.

See the NAM keyword, above, for K1DM3’s named and ordinal positions.

mot PSE When written with value n, the modify command waits (pauses) for n milliseconds,
then returns. The dispatcher itself doesn’t pause; it’s provided to allow scripts to pause
in a way that can be interrupted just like any modify command.

mot RAW Position as measured by the stage’s more accurate encoder (cf. the ENC keyword,
which is the stage’s secondary, less accurate encoder).

For the ROTAT stage, the RAW value is the Renishaw load encoder, and the ENC value
is the motor encoder.

The ARM x actuators are controlled only using the motor encoder (the absolute en-
coder signal is read by the safety system, and is not connected to the swingarm DMC-
40x0), and the motor encoder is used for both the RAW and ENC values.

mot RCD (Remote Control Disablers) If remote (keyword) control is disabled, this explains
why. The keyword is blank if remote control is allowed.

mot REL Relative move of RAW keyword. On read: return integrated motion since last
zeroed. Zeroed when: new pos cmd given (POS mode); or transition from TSP=0
(JOG mode); or any track update (TRACK mode).

mot RON RAW→ORD→NAM keyword mapping. This is a list of alternating RAW, ORD,
and NAM values; it may be updated on the fly to reflect physical changes in a stage,

83

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

such as updates to filters in a filter wheel. The first character of the keyword is the
separator between fields.

Whenever a client writes a new RON value, the dispatcher permanently caches it in
$RELDIR/var/servicename /mapRON.cfg, and the previous file is copied to
$RELDIR/var/servicename /Old/mapRON.cfg.timestamp .

N.B. Whenever the dispatcher is restarted, the contents of the mapRON.cfg file are
used instead of the more-or-less static configuration files. To avoid future confusion,
it is strongly recommended that, after the new RON data are tested and confirmed, the
static configuration files be updated to match the contents of the mapRON.cfg file.

When a client reads a RON keyword, or when the dispatcher broadcasts one, the fields
are separated with tabs, e.g.:

Tab 1234 Tab 1 Tab Name1 Tab 4567 Tab 2 Tab Name2

When writing the keyword to update the current RON mapping, any character can be
used that’s not used in any field data. For example, the above RON string could be
sent to the dispatcher using:

modify -s servicename FOORON=,1234,1,Name1,4567,2,Name2

or
modify -s servicename FOORON=X1234X1XName1X4567X2XName2

mot SPD Stage velocity, in RAW units/s.

For the ROTAT stage, the SPD value is Renishaw load encoder counts/s.

For ARM x actuators, the SPD values are motor encoder counts/s.

mot STA Control status. This is an enum keyword; the possible values are:

Locked Software lockout.

Calibrating

Not Calibrated Stage needs to calibrate before other motion is allowed.

Halted Stage is stopped and in the Halt mode.

Ready Stage is ready to be commanded.

Stopping

Moving Stage is doing a Pos-mode move.

Jogging Stage is moving in Jog-mode.

Slewing Used in Track mode; not used with K1DM3.

Acquiring Used in Track mode; not used with K1DM3.

Tracking Used in Track mode; not used with K1DM3.

TrackSusp Used in Track mode; not used with K1DM3.

At Max Used in Track mode; not used with K1DM3.

At Min Used in Track mode; not used with K1DM3.

Local/Stopped Local (manual) mode, and stopped.

Local/Jogging Local (manual) mode, and executing a jog command.

84

ver 3.7b 12.4. MOTOR-AXIS KEYWORDS

Local/Moving Local (manual) mode, and moving to a specific position.

Fault

Disabled

Initing Stage is executing its special init command.

mot STP Request stop. This is a string keyword. When written with any value, the stage is
commanded to stop. Unlike setting the stage’s control mode to Halt, the STP keyword
leaves the mode unchanged.

When read: returns the last value written; useful if clients put an explanatory message
into the keyword when commanding the stop.

mot SWT (Stopped and Within Tolerance) The keyword value is inPosition if stage com-
pleted a move and is within the configured positioning tolerance.

mot TAG An arbitrary comment string, for use by clients of the service to exchange or record
information. See also mot CMT.

mot TNM (Target NaM) This is the NAM value that corresponds to the current target ordinal
value (see mot TRD).

mot TOR Motor torque. The binary value is the output voltage to the current amplifier for
the servomotor.

For both the ROTAT and ARM x stages, the ascii units are amperes of output current
to the motor. Note: the dispatcher doesn’t update the TOR keyword until the torque
changes by the configuration-specified tolerance level.

mot TOS Same as TOR while the Galil stopcode (see mot GSC) is not a ’running’ value;
not updated while stopcode has a ’running’ value. This is occasionally useful to keep
track of the stationary holding torque, especially in situations where the stage is not
stationary for extended periods of time.

mot TRD (TaRget orD) Ordinal position of the current target position, mot TRG.

mot TRG The stage’s RAW position target.

mot TRL The target position, as a relative move (i.e., distance from current position). It is
0 when not in Pos mode.

mot TRN For rotary stages, this gives the number of full turns, computed as raw counts
divided by the counts per rotation (hence, this can be negative). It is undefined for
linear stages. It is writable, so that applications can set the count to zero or another
desired value.

mot TSP Target speed, in SPD units. This indicates the speed at which the controller is
attempting to drive the stage, while SPD is a measure of the instantaneous velocity of
the load encoder.

mot TVA The target position (mot TRG), in VAL units.

mot TVX The target position (mot TRG), in VAX units.

85

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

mot VAL The VAL keyword contains the RAW value after conversion to physically interesting
units.

For the ROTAT stage, the VAL units are mm of motion at the drum’s Renishaw tape.

For the ARM x stages, the VAL units are mm of actuator extension.

mot VAX The VAX keyword contains the RAW value after conversion to “externally” interesting
units.

For the ROTAT stage, the VAX units are degrees of rotation.

For the ARM x stages, the VAX units are degrees of swingarm rotation, where:

0 degrees is in the plane perpendicular to the light path;

45 degrees is the clamped-in-V-block position;

90 degrees is the mirror parallel to the light path (or, mirror is at the horizontal
position when on the handling cart); and

104.5 degrees is the fully-retracted, Cassegrain position.

mot VEL Velocity, in VAL units/s, as derived from the SPD value.

Hence, units are mm/s for both the drum rotation and swingarm actuators.

mot VEX Velocity, in VAX units/s, as derived from the SPD value.

Hence, units are deg/s for both the drum rotation and swingarm actuators.

mot XMV Shows all the reasons that this stage (probably) cannot move. Some reasons are
not necessarily disabling — for example, a stage may be in a limit that prevents motion
in one direction only.

mot ZPX Setting mot ZPX=n says to force the raw value mot RAW=n, and set mot CAL=homed.
This bypasses normal homing, and is only enabled when the ZPX bit is set in mot ENG.

The K1DM3 drum is not allowed to rotate when the swingarm is retracted, because
the drum will be grossly out of balance. This can create a deadlock situation, since
the swingarm can’t be moved unless the drum position is known, and normal homing
of the drum requires rotation. To avoid deadlock, the drum has two special limit
switches that enable homing without rotation. One switch triggers when the drum
is at the MirrorUp position, and the other triggers at the Cass/Stow (mirror facing
down) position, which are the only positions at which the swingarm is allowed to be
retracted. If the detent is engaged and either one of these switches is active, then the
drum’s position is known precisely, and the ROTAT stage can be homed by using the
ZPX capability.

The swingarm actuators are always homed using the ZPX capability. The absolute
position, converted to motor encoder units, is provided by the safety system through
the k1dm3saf keywords ARM x ENE. These keyword values are applied to the swingarm
actuators using the k1dm3 ARM x ZPX keywords.

86

ver 3.7b 12.5. ASSEMBLY (COMBO-AXIS) KEYWORDS

12.5 Assembly (Combo-Axis) Keywords

Assemblies come in two flavors: motor-like and digi-like. A motor-like assembly provides a
subset of standard motor-stage keywords (section 12.4) for monitor and control of the as-
sembly, plus a handful of keywords for assembly management. Similarly, a digi-like assembly
provides a subset of standard digi-stage keywords (section 12.3), plus a few keywords for
assembly management.

The DRUM and SWINGARM assemblies are motor-like assemblies, while the CLAMPS and
M3MAN assemblies are digi-like.

12.5.1 Motor-like Assemblies

Assembly Prefixes: DRUM, SWINGARM

The keywords for a motor-like assembly asy are:

asy ASM The ASM keyword controls whether the assembly’s components may be directly
commanded via keywords, or whether they may only be commanded from the assembly
itself. If written with linked, components may only move as part of this assembly. If
written with unlinked, all components may be individually commanded. Linking and
unlinking can optionally also have side effects, implemented by per-assembly custom
code.

The DRUM module doesn’t normally operate with ASM=linked. It is OK to command
components individually, because they will refuse to move if it is not safe to proceed.

On the other hand, the SWINGARM always operates with ASM=linked, because problems
will quickly arise if the two swingarm actuators are not moving in synchrony. The
custom code for the SWINGARMASM keyword does the following:

linked When set to linked, the SWINGARM assembly slaves the ARM B actuator to
the ARM A actuator by putting the Galil axes into “gantry” mode (see Galil
commands GR and GM in the DMC-40x0 manual). The SWINGARM assembly’s rules
for motion always begin by setting its own ASM keyword to linked, thus ensuring
gantry mode.

unlinked When set to unlinked, the SWINGARM sends commands to the Galil to turn
off gantry mode. This would only make sense for certain low-level engineering
work, and should never be used for ordinary control of the swingarm.

asy CAL Same use as a motor stage CAL. When written, applies CAL to all components.
When read, returns a combined CAL calibrate state for all component axes.

asy CMP Space-separated list of components that make up this combo stage.

asy CMT Same use as a motor stage CMT.

asy CON Same use as a motor stage CON.

asy ENG Enable engineering modes. Whenever this keyword is written, the engineering bits
remain active for the next asy ENT seconds. The bits are as follows:

COMPINI Same as for motor stage.

87

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

XHOME Same as for motor stage.

XLIMITS Same as for motor stage.

XASM = allow commands to be issued to child components regardless of asy ASM set-
ting. This is different than setting asy ASM=unlinked, because the latter has side
effects such as unslaving stages. This keeps all stage configuration in the ASM
setting.

XFORBIDDEN Same as for motor stage.

ZPX Same as for motor stage.

XSAFETY Same as for motor stage.

asy ENT Same use as a motor stage ENT.

asy ERM Same use as a motor stage ERM.

asy INI Same use as a motor stage INI. When written, applies INI to all components.
When read, returns a combined INI calibrate state for all component axes.

asy LCK Same use as a motor stage LCK. Recursively applies to components.

asy MOD Conceptually, has the same function as a motor stage MOD. However, the only
values are Halt and Pos.

asy MOE Same use as a motor stage MOE. When read, can have the additional value Mixed,
meaning some components are On and others are Off.

asy MOO Same use as a motor stage MOO. When read, can have the additional value Mixed,
meaning some components are On and others are Off.

asy NAM Name of the current position, or Unknown if not at a named position.

asy NMS All valid NAM’s, as a tab-separated list. It may be updated on the fly to reflect
physical changes in a stage, such as updates to filters in a filter wheel. The first
character of the keyword is the separator between the values.

For DRUM: the valid names are the same as for ROTATNAM.

For SWINGARM: the valid names are:

Retract Swingarm is retracted, and docking pin is engaged.

Retracted,Unpinned Swingarm is retracted, but docking pin is not engaged.

Mirror90 Mirror is at the 90◦ position, which is face-up and horizontal when on the
handling cart. Should be used when removing mirror for recoating.

Deploy Swingarm is in the V-blocks and the clamps are closed.

Deployed,Unclamped Swingarm is in the V-blocks but the clamps are not closed.

NotFullyDeployedButClamped Swingarm isn’t quite within tolerance for the V-block
position, but the clamps are closed.

Unknown None of the above.

asy PSE Same use as a motor stage PSE.

88

ver 3.7b 12.5. ASSEMBLY (COMBO-AXIS) KEYWORDS

asy RAW Same use as a motor stage RAW. Its exact definition is set by configuration-file rules.

For DRUMRAW: the value is copied from ROTATRAW.

For SWINGARMRAW: the value is copied from ARM A RAW.

asy REL Same use as a motor stage REL.

asy STA Same use as a motor stage STA, but doesn’t include the track-mode status values.

asy STP Same use as a motor stage STP.

asy SWT Same use as a motor stage SWT.

asy TAG Same use as a motor stage TAG.

asy TNM Similar to a motor stage TNM value, it’s the NAM target. It is blank if the most
recent move command was not by setting NAM.

asy TRG Similar to a motor stage TRG value, it’s the RAW position target. It is blank if the
most recent move command was not by setting RAW.

asy TRL Same use as a motor stage TRL.

asy VAL Same use as a motor stage VAL.

For DRUMVAL: the value is copied from ROTATVAL.

For SWINGARMVAL: the value is copied from ARM A VAL.

asy VAX Same use as a motor stage VAX.

For DRUMVAX: the value is copied from ROTATVAX.

For SWINGARMVAX: the value is copied from ARM A VAX.

asy VX2 Same use as a motor stage VX2.

For DRUMVX2: not used.

For SWINGARMVX2: the value is copied from ARM A VX2.

asy XMV Shows all the reasons that this assembly (probably) cannot move. Some reasons
are not necessarily disabling — for example, a component stage may be in a limit
that prevents motion in one direction only. The assembly XMV is the union of all its
components’ XMV values, excluding those that are configured as remediable through
normal component sequencing. For example, the swingarm actuator XMV keywords
will show that the actuators can’t move if the clamps are closed, but the SWINGARMXMV

keyword won’t show this, because its sequencer will open the clamps before attempting
to move the actuators.

12.5.2 Digi-like Assemblies

Assembly Prefixes: CLAMPS, M3MAN

The keywords for a digi-like assembly dig are:

89

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

dig ASM The ASM keyword controls whether the assembly’s components may be directly
commanded via keywords, or whether they may only be commanded from the assembly
itself. If written with linked, components may only move as part of this assembly. If
written with unlinked, all components may be individually commanded. Linking and
unlinking can optionally also have side effects, implemented by per-assembly custom
code.

The K1DM3 digi-like assemblies do not normally operate with ASM=linked. It is OK
to command components individually; they will refuse to move if it is not safe to
proceed.

dig CMP Space-separated list of components that make up this combo stage

dig CMT Same use as a digi-stage CMT.

dig CON Same use as a digi-stage CON.

dig ENG Engineering flags. Whenever this keyword is written, the engineering bits remain
active for the next dig ENT seconds. The bits are as follows:

COMPINI Same as for digi-stage.

XHOME Same as for digi-stage.

XLIMITS Same as for digi-stage.

XASM = allow commands to be issued to child components regardless of asy ASM set-
ting. This is different than setting asy ASM=unlinked, because the latter has side
effects such as unslaving stages. This keeps all stage configuration in the ASM
setting.

XFORBIDDEN Same as for digi-stage.

ZPX Same as for digi-stage.

XSAFETY Same as for digi-stage.

dig ENT Same use as a digi-stage ENT.

dig ERM Same use as a digi-stage ERM.

dig ERR Same use as a digi-stage ERR.

dig LCK Same use as a digi-stage LCK. Recursively applies to components.

dig MSG Same use as a digi-stage MSG.

dig POS Name of the current ordinal position, or Unknown if not at an ordinal position.

For CLAMPS, the values are CLOSED and OPEN.

For M3MAN, the values are identical to the M3AGENT values given in section 4.2.

dig PSE Same use as a digi-stage PSE.

dig STA Similar to a digi-stage STA, but it also has calibrating-type status values to handle
the case when a motor component is part of a digi-type stage.

dig STP Same use as a digi-stage STP.

90

ver 3.7b 12.6. STATUS FROM SAFETY SYSTEM

dig TAG Same use as a digi-stage TAG.

dig TRG Same use as a digi-stage TRG.

dig XMV Shows all the reasons that this assembly (probably) cannot move. Some reasons
are not necessarily disabling — for example, a component stage may be in a limit
that prevents motion in one direction only. The dig XMV is the union of all its compo-
nents’ XMV values, excluding those that are configured as remediable through normal
component sequencing.

12.6 Status from Safety System

As described in chapter 8, the safety system reports its status using six output bits that
are connected to inputs of the swingarm control Galil. This allows the k1dm3 service to
directly know the cause of any safety triggers, without needing to consult the separate,
supplementary safety system service k1dm3saf.

The safety input states are available via these k1dm3 keywords:

SAF EAG Yes if the two encoders agree with each other; otherwise No

SAF EIR Yes if the encoders are within the valid range; otherwise No

SAF EOK Yes if the two encoders are OK (have no error signal); otherwise No

SAF ESP Yes if the encoder speed is within the speed limit; otherwise No

SAF HBT Yes if the heartbeat signal is pulsing; No otherwise. The keyword shows if the
heartbeat has timed out, not the actual pulses of the heartbeat signal.

SAF RER Yes if the absolute encoders show the swingarm is in the slow zone near the
fully-retracted point (RER = REtract Region); otherwise No.

SAF VBR Yes if the absolute encoders show the swingarm is in the slow zone near the
V-blocks (VBR = V-Block Region); otherwise No.

SAFETYBITS1 A mask keyword that shows the combined state of all the alarm bits. It
will either be AllOK or one or more of EncNotOK, EncDisagree, EncOutOfRange,
SpeedNotOK, and HeartbeatFail.

SAFETYBITS2 A mask keyword that shows the combined state of the position bits. It should
be just one of FastRegion, VblockRegion, or RetractRegion.

12.7 TCS Interface Keywords

When K1DM3 is on a handling cart, it ignores the telescope control service dcs1. But when
K1DM3 is installed in the tertiary tower, it monitors the dcs1 tertiary mirror keywords,
TERTxxx , and moves as demanded by the usual Halt, Init, Standby, and Move rules.

The read-only keyword USEDCS indicates if k1dm3 is using the dcs1 service. When
USEDCS is true, K1DM3 “mirrors” the following dcs1 keywords. For each of the following
keywords, there is an equivalent k1dm3 keyword of the same name, and K1DM3 copies the
dcs1 value into the k1dm3 value:

91

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

• ROTTIME. Serves as a “heartbeat” keyword for the TCS rotator control daemon.
• EL Telescope elevation.
• TERTDEST. Tertiary destination, an enum.
• TERTPOSN. Current tertiary position, an enum.
• TERTERRS. Error message; also used for general-purpose messages.
• TERTERVL. Integer error code.
• TERTSTAT. Tertiary status, an enum.
• TERTSTST. Tertiary status, as a string.
• TERTABRT, TERTABRTC. Abort.
• TERTHALT, TERTHALTC. Halt.
• TERTINIT, TERTINITC. Init.
• TERTMOVE, TERTMOVEC. Move.
• TERTSTBY, TERTSTBYC. Standby.

When any of the k1dm3 keywords TERT{ABRT,HALT,INIT,STBY,MOVE}C transitions from
false to true (or no to yes), the corresponding “modify” sequencer is executed (see fig 4.1;
sections 4.2 and 3.6). This enables one to nearly exactly duplicate the actions triggered by
the TCS, simply by toggling the value in the appropriate k1dm3 keyword.

When USEDCS is true, the sequencers send their status information to the dcs1 TERTxxx

keywords, which are then mirrored into the corresponding k1dm3 keywords. On the other
hand, when USEDCS is false, the sequencers do not write to the dcs1 keywords, but instead
write directly to the k1dm3 keywords.

12.8 Major Sequencer Keywords

The two major sequencer keywords, ACTIVATE and M3AGENT, each have a group of supple-
mentary keywords to provide feedback as they execute. The supplementary keywords are
named are named ACTIVxxx and M3xxx , respectively.

The sequencers are described in detail elsewhere (M3AGENT in section 4.2, and ACTIVATE

in section 3.5); their values in brief are:

ACTIVATE:

• Ready for observing: Observe
• Activate swingarm and initialize actuators: Swingarm
• Activate swingarm but don’t initialize actuators: Swingarm/noinit
• Ready to rotate: Rotate
• Ready for transport in/out of tower: Transport

M3AGENT:

• TCS-like actions: Halt, Init, Stby, Stop
• Instrument positions: LNas, RNas, LBC1, RBC1, LBC2, RBC2, Cass
• Supplementary positions: Stowed, Mirror90, MirrorUp
• Other motions: StepPos, StepNeg, JogPos, JogNeg
• Special actions: NoMoveInitRotate, NoMoveInitEncoders, EngrTest

The supplementary keywords are:

92

ver 3.7b 12.9. ELEVATION KEYWORDS

M3ENG, M3ENT. The M3ENG keyword provides engineering flags, and the M3ENT keyword
provides a corresponding timer. When you set flags in M3ENG, the timer is set to
20 minutes. The engineering flags remain active until the timer expires. The flags are:

• USEDCS. Normally, if LOCATION is not Tower, then k1dm3 does not respond to TCS
tertiary commands, nor does it report status in dcs1 TERTxxx keywords. Setting
the USEDCS engineering flag tells k1dm3 to respond to TCS tertiary commands
just as if it is in the tower. This can be used for limited on-deck testing of
TCS-related functionality.
• Engr1, Engr2, Engr3. If one of these is set, and M3AGENT is set to EngrTest, then

the sequencer invokes the corresponding test script m3.engrTest1, m3.engrTest2,
or m3.engrTest3.

ACTIVERM, M3ERM. These show the last error message for the executing sequence.

ACTIVLOG, M3LOG. At the end of each ACTIVATE or M3AGENT execution, the complete stream
of its xxx MSG output is copied into the xxx LOG keyword, thus giving a one-keyword
account of the full execution of the sequence.

ACTIVMSG, M3MSG. Each ordinary line printed by an ACTIVATE or M3AGENT sequence is copied
into this keyword, so that it provides a running account of the executing sequence.
In addition, the dispatcher puts some status information into the keyword, such as
noting the start and stop of the sequence.

ACTIVRUN, M3RUN. The boolean xxx RUN keywords are set to true just before exec’ing the
sequencer’s external script, and set to false when the script exits.

For the convenience of the engineering GUI, the boolean keywords ACTIVATE xxx , where
xxx is one of {ARM, DRUM, OBS, TRANS}, are true if ACTIVATE has the corresponding value,
and can be written to command the corresponding state.

12.9 Elevation Keywords

EL DEPLOY The telescope elevation, in degrees, at which the swingarm should be deployed.
Note: during testing in December 2017, the mirror positioning repeatability was char-
acterized at El=67◦ only. Repeatability at other elevations is not known, nor whether
the mirror deploys into a slightly different position at other elevations.

EL DMD An extremely terse string keyword that summarizes the combined EL NEED and
EL SATISFIES values:

• ‘’ An empty string means no elevation change is required.

• xx The current command requires the telescope to slew in elevation to xx deg.

• 45-xx The current command requires the telescope to slew to any elevation
between 45◦ and xx deg.

EL DMDX An very terse string keyword that summarizes why EL DMD is non-blank. Its values
can be:

• EL != xx Elevation isn’t xx deg.

93

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

• EL < xx Elevation is less than xx deg.

• EL > xx Elevation is greater than xx deg.

• ‘’ An empty string means that EL NEED isn’t Deploy or Retract, or else EL SATISFIES

meets EL NEED.

EL MAXWAIT Maximum amount of time, in seconds, the sequencer will wait for the telescope
to reach the elevation specified by EL DMD, before it gives up and throws an error. Valid
range: 0–180.

EL NEED An enumerated keyword, indicating the telescope elevation required by the currently-
executing Init or Move:

• Any = any elevation is ok.

• Cart = The module is on a handling cart, so telescope elevation is irrelevant.

• Deploy = Elevation must be at EL DEPLOY.

• Retract = Elevation must be between 45◦ and EL RETRACT deg.

EL RETRACT The telescope elevation, in degrees, below which the swingarm should be re-
tracted.

EL SATISFIES A mask keyword, indicating if the telescope elevation is suitable for deploy
or retract operations:

• None: swingarm may not be moved at this elevation.

• Cart: The module is on a handling cart, so telescope elevation is irrelevant.

• Deploy: The telescope elevation is at EL DEPLOY, suitable for deploying the swing-
arm. Generally, EL DEPLOY ≤ EL RETRACT, so Retract will generally be set when-
ever Deploy is set. Will not be set if module is on handling cart.

• Retract: The telescope elevation is suitable for retracting the swingarm: 45◦ ≤
Elevation ≤ EL RETRACT. Will not be set if module is on handling cart.

• Activate: The telescope elevation is suitable for activating the swingarm: 45◦ ≤
Elevation. Will not be set if module is on handling cart.

ELALERT A string keyword that is blank if ELMIN and ELMAX are nominal, else a terse
message indicating their problematic values. See the configuration rules for the details
of when this is evaluated. Resets to blank whenever swingarm reaches retract position.
If a client application sets the value to ack, the dispatcher will disable further updates
of the keyword until it is blanked at next full retract.

ELMIN,ELMAX The minimum and maximum telescope elevation during the last deploy op-
eration. Allows one to check if the elevation stayed at EL DEPLOY during the entire
motion.

12.10 Environment Keywords

EBOX 3 3V, EBOX 3 3V R: E-box 3.3V supply voltage, and “raw” analog input voltage before
scaling to correct range.

94

ver 3.7b 12.11. OTHER KEYWORDS

EBOX 5V, EBOX 5V R: E-box 5V supply voltage, and “raw” analog input voltage before
scaling to correct range.

EBOX AIR T, EBOX AIR TR: Air temperature in E-box sensor, deg C, and “raw” analog input
voltage before conversion to deg C.

12.11 Other Keywords

ANALOGd n , where d is a dispatcher number (Swingarm=1, Drum=2), and n is a Galil
analog input number (1..8). These keywords give the “raw” analog input voltage as
reported directly by the Galil, before conversion to the specific keyword value.

AIRPRESSX “Smart” air pressure report.

• NoInnerAir = air supply is not connected to the inner drum;

• NoInnerPower = the inner drum power is off;

• DispNotReady = the swingarm dispatcher is not Ready;

• otherwise = INR AIRPRESS.

ARMDIFF Difference between Arm A and Arm B, motor encoder counts. Not to be con-
fused with k1dm3saf ’s ARMDIFF keyword, which is the difference between the absolute
encoders, converted to motor encoder units.

CABLES This bitmask keyword shows which cables are connected. The possible cable bits
are: TwrInnerSig, TwrInnerPwr, TwrRotMot, TwrRotEnc, TwrRotSig, SvcInnerSig,
SvcInnerPwr, SvcRotMot, SvcRotEnc, SvcRotSig, Paddle. Here, Twr means the in-
tower cables, Svc means the “service” cable set used when operating the module on the
handling cart, Rot refers to rotation (drum) cables, Inner means inner-drum cables,
Mot means motor-power cables, Enc means encoder cables, and Sig means other signal
cables.

CABLESET This enum keyword is derived from CABLES, an shows which cableset is con-
nected. The possible values are: None (No cables), Telescope (the in-tower cableset
is fully connected), Service (the service cableset for on-handling-cart operations is
fully connected), Mixed (a mixture of telescope and service cables are connected),
Incomplete (an incomplete set of cables is connected), Paddle (the hand paddle and
nothing else is connected).

CLAMP a CLO, where a is one of {A, B, C1, or C2}. This is a convenience keyword that is
Yes or No according as CLAMPSCLOSED (see below) indicates the corresponding clamp
is closed. These are used as pseudo-limit bits for the clamp digi-stages: instead of
an actual clamp-is-closed limit switch, the dispatcher substitutes the value of this
keyword.

CLAMPCURR This indicates the combined current flow through the individual closed-clamp
signals. When closed, clamps {A,B,C1,C2} generate signals of {1, 2, 4, 8} × 660mV ,
respectively. The analog voltages are combined to produce a single analog value that
is decoded by the drum subsystem. This value should be (1 . . . 15)×660 mV. Its value
is only meaningful when the module is at one of the instrument positions (where there
is analog connectivity to the inner drum), and not moving, so that the signal is stable.

95

CHAPTER 12. K1DM3 KTL SERVICE KEYWORDS ver 3.7b

CLAMPSTEADY True when the CLAMPCURR value is steady. This is used as part of the rule
for determining when it’s valid to copy the “raw” clamps-closed value, CLAMPUNFILT,
to the actual CLAMPSCLOSED keyword.

CLAMPUNFILT This is the decoded value of CLAMPCURR, without regard to whether the signal
is steady or the drum is at an instrument position. It is a mask keyword with fields
A, B, C1, C2, or None (when no field is active).

CLAMPSCLOSED This is the same value as CLAMPUNFILT, except it is updated only when the
signal is steady and the module is at an instrument position.

DEADMAN{1,2,3} Each Galil is running a deadman timer thread that must be reset by
the dispatcher every second or so. If the timer expires, the deadman thread stops all
axes, and sets an output bit. The DEADMANi boolean keyword reports the state of the
output bit.

DOCK HALL The swingarm dock system has a Hall-effect sensor that was installed to support
an alternative homing scheme, in case the preferred method did not work. Well, our
preferred method worked fine, so the hall sensor is not needed. Nonetheless, this
keyword exists and reports the state of that Hall sensor.

DOCKBITSOUT Tells the state of the docking pin output control bits.

DRUMSTA STOP Boolean convenience keyword that reports whether the DRUM assembly status
is a “stopped” status.

ESTOP The current E-stop state.

GETAIR An air supply sequencer. It engages the air supply if not engaged, then waits for
pressure to exceed 75 psi. Values:

• Unknown = we can’t read INR AIRPRESS.

• NotReady = INR AIRPRESS is low.

• Ready = INR AIRPRESS ≥ 75 psi.

INBLOCK11 Value of Swingarm dispatcher (dispatcher 1) input bit block 1 (I/O bits are
reported by the Galil in blocks of 8, beginning at 0).

INNER24V Turn on/off 24V power to inner drum.

INNER48V Turn on/off 48V power for swingarm motors.

OUTER48V Turn on/off 48V power for rotation motor.

INR AIRPRESS Air pressure, as read at the inner drum.

LK xxx Drum dispatcher’s mirror of last known (LK) values for a variety of swingarm dis-
patcher keywords. This provides a readable, useful value even when the swingarm dis-
patcher is suspended, for keywords ARM i {GSS,INI}, and SWINGARM{ASM,MOD,NAM,TNM}.

LOCATION K1DM3 physical location: Tower if the in-tower signal is active; Cart if the
pinned-to-cart signal is active; else none. This is a mask keyword, and it’s an error if
neither or both location signals are active.

96

ver 3.7b 12.11. OTHER KEYWORDS

MAN OVERRIDE Normally, keyword commands are rejected while the hand paddle is con-
nected. When MAN OVERRIDE is set to n, then keyword commands are accepted for
the next n seconds. Warning: it is unsafe to enable keyword commands when others
believe they are locked out! This should only be used with care.

OVERSPEED This boolean keyword goes true whenever k1dm3saf.CT SPEED increments,
which indicates that an overspeed condition occurred. It is reset to false when the
motors are next turned on.

OVERTEMP A mask keyword that indicates if any swingarm overtemp signals are active

PADDLE This is a mask keyword that shows which hand-paddle bits are active.

PENDINGSTOP Monitors the total number of executing or pending DRUMSTP and SWINGARMSTP

commands.

PINNED A mask keyword that reports which pins are connected: None, Cart (drum pinned
to cart), Drums (drums pinned together).

ROTATSW The drum has two supplementary position switches that indicate if the drum is
near the MirrorUp or Cass/Stow positions. This mask keyword indicates which of
these is active, if either.

ROTSTA STOP Boolean convenience keyword that reports whether the ROTAT assembly status
is a “stopped” status.

ROTATSW State of position switches on drum. The drum has two coarse position switches
— one trips at the MirrorUp orientation; the other at the Cass/Stow orientation. If
one of these switches is active, and the drum’s detent mechanism is engaged, then the
dispatcher can assert the drum’s precise position without needing to do any rotation
to read the Renishaw tape’s reference marks. This is crucial for bootstrapping the
system if it powers up with the swingarm in an elevated position, since rotation is
forbidden in that case.

SWINGSTA STOP Boolean convenience keyword that reports whether the SWING assembly
status is a “stopped” status.

WITHDOCK Indicates if the swingarm is configured to control the dock.

97

Chapter 13

k1dm3saf KTL Service
Keywords

This section summarizes all the keywords provided by k1dm3saf. Additional information
— such as data type, data range, allowed values — is available using gshow to query the
keyword data, using its various help options.

The k1dm3saf service has a single dispatcher, which listens for status messages sent to
UDP port 1222 by the Swingarm Safety System’s Galil RIO. To minimize the possibility of
interfering with the safety system’s operations, the dispatcher never sends anything to the
RIO.

The k1dm3saf keywords are:

Dispatcher Self-State

DISP0CLK Dispatcher clock; increments every second.

DISP0DBG Not currently used by dispatcher.

DISP0DWIM Debugging interface. See code for details.

DISP0ERR Last dispatcher error number. (IRL, this keyword never changes from 0).

DISP0HOM Hostname on which the dispatcher is running.

DISP0MSG Last general status message.

DISP0PID Process ID of the dispatcher.

DISP0REQ Last “modify” request received by the dispatcher.

DISP0SHUTDN When written with any value, tells dispatcher to exit.

DISP0STA Either Initializing (brief startup time value, generally too brief to be
logged), or Ready.

Safety Status

ALL OK Overall state of safety monitor: Unknown, No, or Yes.

CT DISAGREE Count of occurrences of the two Renishaw encoders disagreeing with
each other. Zero’d when the dispatcher is restarted.

98

ver 3.7b

CT NOTOK Count of occurrences of an encoder’s status bits being not-ok. Zero’d when
the dispatcher is restarted.

CT RANGE Count of occurrences of the encoders being out of the permitted range of
values. Zero’d when the dispatcher is restarted.

CT SPEED Count of occurrences of overspeed condition. Zero’d when the dispatcher
is restarted.

ENC AGREE Yes if the two encoders agree with each other; otherwise No or Unknown.

ENC INRANGE Yes if the encoders are in the permitted range; otherwise No or Unknown.

LOOPSTATUS Status of the code running on board the Galil. One of:

OK: loop is running as expected.

No Data: no data has been received from the Galil in 3 seconds.

Bad Record: the Galil sent an invalid “Data Record”.

Not Running: data records are being auto-broadcast by the Galil and received
by the dispatcher, but the on-board code loop is not running.

SPEED OK Yes if the speed is within the speed limit; otherwise No or Unknown.

SUMMARY A terse list of all the safety status keywords that are in a not-OK state,
alternating with their values.

The CT xxxx keywords are useful because some conditions can be transitory, triggering
an Abort/ELO on the swingarm Galil but lasting for only a fraction of a second. The
counter keywords are persistent, and so will show the event that occurred even if the
problem already went away.

Encoder Data

ARMDIFF The difference of the absolute encoders in motor encoder units: (ARM A ENE

- ARM B ENE). Not to be confused with k1dm3 ’s ARMDIFF keyword, which is the
difference between the motor encoders.

ARM A ENE The expected actuator A encoder value, derived from ENCODER0.

ARM B ENE The expected actuator B encoder value, derived from ENCODER1.

ENCODER0. The RIO’s Encoder 0 value. This is the encoder mounted on actuator A.

ENCODER1. The RIO’s Encoder 1 value. This is the encoder mounted on actuator B.

ENCBAD0. Distance of Encoder 0 from the V-block when the last problem triggered,
in units of absolute encoder counts. That is, it is 0 when in the V-block, and
something like 507,000 counts in the Retract position. The ENCBADx keywords are
meaningful only when an error occurs, in which case one of the counter keywords
(CT xxx) will have incremented at the same time that the ENCBADx keywords are
set. (Note that the CT xxx keywords are reset at each safety RIO power-up; they
only indicate errors when they increment.)
N.B. Each time the safety RIO is powered up and initializes, it briefly transitions
through an error state, triggering the recording of the absolute encoder values
(not their distance from the V-blocks) into the ENCBADx keywords. Always use
the CT xxx keywords to check whether an error occurred when values were last
latched into the ENCBADx keywords.

99

CHAPTER 13. K1DM3SAF KTL SERVICE KEYWORDS ver 3.7b

ENCBAD1. Distance of Encoder 1 from the V-block when the last problem triggered, in
units of absolute encoder counts. That is, it is 0 when in the V-block, and some-
thing like 507,000 counts in the Retract position. See the additional discussion
under ENCBAD0.

MAXSPEED The maximum value of SPEED over the previous second.

SPEED The current speed of the swingarm, in absolute encoder counts/sec, as com-
puted by differencing successive encoder values. The Galil RIO reads the en-
coders at 25 ms intervals, whereas the safety loop is updating at 20 ms intervals,
so roughly every eight reading will show speed=0.

Supplementary

INPUTS All 16 digital inputs, presented as a hexadecimal value.

OUTPUTS All 16 digital outputs, presented as a hexadecimal value.

REGION General location of the swingarm, according to the region-indicating output
bits #4 and #5 (see section 8.2). Normal values are VBlock, Retract, or High

Speed. The value Unknown is used when LOOPSTATUS is not OK, and the value
ErrorBothActive means that both bits #4 and #5 are active.

SAMPNUM The “sample number” from the data record of the Galil RIO. For our pur-
poses, it’s a heartbeat signal.

SE0, SE1. These are the values of the SE0 and SE1 operands from the Galil
RIO, and report the status values of the absolute encoders. Possible values
are OK; Encoder timeout (encoder did not set the “start bit” within 30µs);
CRC Error (CRC checksum error in data from encoder); Encoder error and
Encoder warning.

ZC, ZD. These are the values of the Galil RIO “user variables” of the same name,
which are included in the data record. The on-board code packs the values of
these Galil RIO operands into ZC: SE0, SE1, and RS. The on-board code uses
ZD as a loop counter for trips through the safety monitoring code.

100

Chapter 14

k1dm3mon KTL Service
Keywords

This section summarizes the keywords provided by k1dm3mon. Additional information —
such as data type, data range, allowed values — is available using gshow to query the
keyword data, using its various help options.

As mentioned in section 9, the k1dm3mon service is an instance of the emir application.
A general discussion of emir ’s concepts of groups and conditions is found in (Deich, 2014).
Here, we outline the groups and conditions that make up k1dm3mon.

K1dm3mon is made up of two dispatchers. Dispatcher #1 is the main dispatcher, con-
taining all monitoring except for reporting whether the k1dm3 and k1dm3saf dispatchers’
heartbeats are present. Dispatcher #2 monitors those heartbeats.

Each condition cond has the following keywords:

cond REM Brief description of what the condition monitors.

cond STA Current status of the condition. Values can be:

Standard: OK, NOTICE, WARNING, ERROR, CRITICAL.

Exceptional: Priming, DISABLED, CANT COMPUTE, NO HEARTBEAT.

The standard values are those that are directly set by the condition. The exceptional
values are set by the emir daemon, and give a reason that the condition is not being
evaluated normally: Priming means the the daemon is initializing; DISABLED means
that a user has disabled updates by setting the cond DIS keyword (either directly,
or via a parent group’s DIS keyword); NO HEARTBEAT means that the condition can’t
be evaluated because it depends on a keyword from a service whose heartbeat has
stopped; CANT COMPUTE means that the condition can’t be evaluated because it de-
pends on another condition or keyword that is currently unavailable, typically due to
NO HEARTBEAT.

cond ACK An active alarm is any condition or group whose status is not OK or DISABLED.
The cond ACK keyword is used to acknowledge the alarm. Unlike the cond DIS key-
word, an acknowledged condition is still active, but it won’t send email or texts, and
other workers can see that the alarm has been acknowledged and is being handled
(presumably) by someone else.

101

CHAPTER 14. K1DM3MON KTL SERVICE KEYWORDS ver 3.7b

cond DIS Disables a condition. The value is either a timestamp (e.g. 4pm or 2020-12-03T12:13:14),
or a duration with the word hence added, e.g. 4 hours hence). The condition will
be ignored until the timer expires (or is reset by setting it blank or to a time in the
past).

cond MSG Message string to accompany the cond STA.

Each group grp has the following keywords:

grp MEM A list of the group’s member groups and conditions.

grp CNO An integer, it reports the number of conditions that are not in an OK state (CNO
= Conditions-Not-Ok), recursively including all child conditions.

grp ACK Like the per-condition ACK, but applied recursively to its members.

grp DIS Group disable setting. Like the per-condition DIS, but applied recursively to its
members.

grp MSG Group status message. This is computed from the combined messages of its mem-
bers.

grp REM Brief description of the group.

grp STA Group status code. This is generally computed as the “worst” status among its
members.

The k1dm3mon groups and conditions are as follows:

Group DISP2TOPLEVEL: monitors the “heartbeat” keywords from the K1DM3 dispatchers
and the keyword history service.

Condition HISTORY: State of keyword history service

Group GALILS: monitors for the various Galil dispatchers

Condition DM3DRUM: Drum (rotation) Galil

Condition DM3DOCK: Dock RIO

Condition DM3SWINGARM: Swingarm Galil

Condition DM3SAFETY: Safety System RIO

Group DISP1TOPLEVEL: monitors everything except heartbeat keywords.

Group SWINGARM: Various swingarm checks

Condition DM3 1CONN: Check for reconnection problem.

Condition MOTORON A: Check for excessive motor-on time, actuator A.

Condition MOTORON B: Check for excessive motor-on time, actuator B.

Condition MOTOR OVERTEMP: Actuator over-temp status.

Condition ELEVATION: Swingarm elevation monitor. Alert if deploy is occurring
at other than 67◦.

Condition SECURED: In-tower swingarm position check. Warns if neither deployed+clamped,
nor retracted+docked.

102

ver 3.7b

Group SAF COUNTERS: Safety condition counters. Keeps track of the k1dm3saf
counters that reflect the following problems:

Condition ENC DISAGREE: Swingarm encoder agreement.

Condition ENC OORANGE: Swingarm encoder out of range.

Condition ENC NOTOK: Swingarm encoder error flags.

Condition ENC OVERSPEED: Swingarm encoder overspeed.

Group DRUM: Rotation Checks.

Condition DM3 2CONN: Check for reconnection problem.

Condition ROTMAXSPD: Check that slews are done at high speed. (Catches rare
situations in which speed was set low for some engineering tasks, then not
reset to full speed.)

Condition MOTORON DRUM: Check for excessive motor-on time.

Condition DETENT MONITOR: When air is engaged, detent must be engaged.

Condition MOVEDIR: Preferred move direction should be Quick. (The MOVEDIR

keyword can direct rotation to always be positive, always be negative, or
take the least-time path. Least-time should always be used except for certain
engineering purposes.)

Group DOCK: Conditions on docking

Condition DM3 3CONN: Check for reconnection problem.

Condition DOCK RETRACT: Check that dock is engaged at retract.

Condition DOCK MOVING: Check that dock is retracted during motion.

Condition WITHOUTDOCK: Check that swingarm configuration isn’t ignoring the
dock.

Group OTHER: Other Conditions

Condition PRESSURE MONITOR: Alert on low air pressure.

Condition SWLOCK: Alert if there’s a SWINGARM or DRUM software lockout.

Group POWER: Monitor sources of heat.

Group PWRSUPPLIES: Power Supplies

Condition OUTER48V: Alert if drum motor power has been on for over 5
minutes.

Condition INNER24V: Alert if inner drum 24V supply has been on for
over 5 minutes.

Condition INNER48V: Alert if inner drum 48V supply has been on for
over 5 minutes.

Group SOLENOIDS: Solenoid Active Bits.

Condition DRUMBITS: Alert if any outer drum solenoid output bits have
been active for over 5 minutes.

Condition SWINGARMBITS: Alert if any inner drum solenoid output bits
have been active for over 5 minutes.

Condition DOCKBITS: Alert if any dock solenoid output bits have been
active for over 5 minutes.

103

Appendix A

Useful Numbers

A.1 Network Addresses

128.171.95.33 Instrument host, outside interface.

192.168.23.100 Instrument host, internal interface.

192.168.23.101 Safety System RIO-47142.

192.168.23.111 Swingarm DMC-4040.

192.168.23.112 Rotation DMC-4040.

192.168.23.113 Dock RIO-47142.

104

ver 3.7b A.2. SWINGARM SAFETY SYSTEM

A.2 Swingarm Safety System

Swingarm Safety System

Arm A, V-block position 8971191 Renishaw encoder counts

Arm B, V-block position 9841984 Renishaw encoder counts

Safety Trippoints

Max distance beyond V-block 800 Renishaw counts
∼ 630 motor counts

Max distance beyond Retracted 1900 Renishaw counts
≈ 1500 motor encoder counts

Size of slow speed zones: 10 mm of actuator motion
= 40960 load encoder counts
≈ 32250 motor encoder counts

Max speed, slow zone 6350 Renishaw counts/sec
= 5000 motor counts/sec

Max speed, fast zone 50800 Renishaw counts/sec
= 40000 motor counts/sec

Max encoder difference 2048 Renishaw counts
≈ 1610 motor counts

105

APPENDIX A. USEFUL NUMBERS ver 3.7b

A.3 Swingarm Actuators

Motor encoder 8192 counts/rev
= 8192 counts/0.1”
≈ 3225.2 counts/mm

Renishaw load encoder 4096 counts/mm

Renishaw:motor encoder ratio 1.27

Backlash ≈ 200 motor encoder counts
≈ 60µ

Torque limit 7.7 amp continuous, 22.5 amp peak

Retracted position 104.5 deg from X-Y plane (Z-axis is the drum’s axis
of rotation)
= 507111 Renishaw counts
= 399300 motor counts

Speed in slow zone 3810 Renishaw counts/sec
= 3000 motor counts/sec

Speed in fast zone 31750 Renishaw counts/sec
= 25000 motor counts/sec

Size of slow-speed zones 50800 Renishaw counts
= 40000 motor counts
≈ 5.3 cm of swingarm motion

Positioning tolerance 50 motor counts
≈ 39 Renishaw counts
≈ 15.5µ

Swingarm positions
Position Name

(ROTATORD) (ROTATNAM)
0 Deploy
1 Retract
2 Mirror90

106

ver 3.7b A.4. DRUM

A.4 Drum

Renishaw encoder resolution 200 counts/mm

Renishaw:motor encoder ratio ∼1:5.116651 ≈ 0.19544

Gear head ratio 60:1

Ring/pinion gear ratio 15.12:1

Motor encoder counts/revolution 4096

Backlash ≈ 1900 motor encoder counts

Full Circle Expect:
60× 15.12× 4096 = 3715891.2 motor counts.
Measured:
∼ 726256 Renishaw counts
≈ 3716000 motor counts

Usable Renishaw tape range 16000 – 735000 Renishaw counts (719000 counts)
The physical tape gap is about 1-2mm, but the read-
head is physically a few cm long, and the readout is
unreliable anywhere near the gap. The dispatcher
acts as if a region of about 3.6 cm of tape is unus-
able, and rehomes whenever it crosses that segment
of tape.

Positioning tolerance 5 load encoder counts
= 25 µ
≈ 25.6 motor encoder counts

Rotation speed 40000 motor encoder counts/sec
≈ 39 mm/sec
≈ 7817 load encoder counts/sec

V-block positions
Position Name Angle

(ROTATORD) (ROTATNAM) (ROTATVAX)
1 LNas 89.802
2 LBC1 49.943
3 LBC2 38.552
4 MirrorUp −0.429
5 RBC2 −38.641
6 RBC1 −50.224
7 RNas −90.101
8 Cass/Stow 179.518

107

APPENDIX A. USEFUL NUMBERS ver 3.7b

A.5 Typical Move Times

— Between —

Time (s)

LNas, RNas 62

LNas, Cass 118

LNas, LBC1 23

LNas, LBC2 28

RNas, Cass 112

RNas, LBC2 48

Cass, Stow 80

LBC1, LBC2 18

LBC1, Stow 54

Actual move times vary, primarily due to the variable time to detect that the swingarm
Galil has powered up, for the swingarm dispatcher to make its initial connect, and the time
for pneumatic components to move.

A.6 Other Numbers

Clamps-closed analog signal: The clamps-closed analog signals from clamps
{A,B,C1,C2} are, respectively, {1,2,4,8} ×660 mV.

108

Appendix B

Actuator Calibration and
Position Adjustment

This appendix reviews the positioning tolerances, and explains how to re-adjust or cali-
brate sensors if they become out of position or fail. Position tolerances are set tightly for
engineering purposes, even though the science requirements are much looser.

B.1 Swingarm Absolute Encoders

The procedure for replacing and/or aligning a readhead is covered in Technical Note 872-
LTN2006, Ratliff et al. (2019). Here we provide some additional background information.

The swingarm is calibrated using the Renishaw absolute encoders, but thereafter the mo-
tion is controlled using only the motor encoders. The positioning tolerance for the actuators
is 50 motor encoder counts, or ∼ 15.5µ. In practice, the actuators position to 1-2 motor
encoder counts. The actual variation reported by the load encoders, when the swingarm is
moved repeatedly into and out of the V-blocks, is about 50 load encoder counts, or about
12µ. This is due partly to backlash in the actuators, and partly due to the variability caused
by the compliant hinge.

The two Renishaw absolute encoder tape strips have different ranges: when the swingarm
is in the V-blocks, the Arm A encoder reads approx 8,972,000 counts, and the Arm-B encoder
reads approximately 9,842,000 counts. Both of them count in the reverse direction from the
motor encoders: the motor encoder counts increase as the swingarm retracts; the absolute
encoder tape counts decrease. Those values are burned into the code on board the safety
RIO, and are used by the k1dm3saf KTL service when it converts absolute encoder position
to the corresponding actuator motor encoder position, but the values are not known to any
software outside of k1dm3saf.

Note that:

• If the Renishaw readhead mounting is shifted slightly, the stored values for the absolute
encoder positions must change accordingly.

• The Renishaw encoder tape is attached to one of the anti-rotation arms of the actuator,
which in turn is clamped to to the actuator shaft. If the clamped position changes at
all, the stored values must change accordingly.

109

APPENDIX B. ACTUATOR CALIBRATION AND POSITION ADJUSTMENT ver 3.7b

• Of course, if a readhead or the encoder tape is replaced, the stored values must be
updated.

B.2 Drum Readhead

The drum orientation is measured by a Renishaw incremental encoder, with distance-coded
reference marks for homing.

The drum rotation tolerance∗ is 5 load encoder counts, or 25µ. In practice, the drive
can position to within 1 count of the target position, but of course the final position is
determined by the detent engaging in a v-block.

If the drum readhead position is disturbed, the reported drum orientation will change
by the same amount. When commanded to an instrument position, the dispatcher will
rotate the drum to a position that has the same amount of error. If the error is small,
the detent mechanism will pull the drum into position when the detent is engaged. If the
error is more than 25µ (the drum positioning tolerance), the dispatcher will report this
position as “unknown”, which will prevent normal operation of the module. Thus, if the
drum readhead position is changed, all of the configured-in instrument positions must be
modified by a corresponding amount.

Always ensure the readhead position is changed by less than a few mm before attempting
recalibration. If changed by more than a few mm, you would have to use a different, more
painstaking procedure to re-determine the instrument positions, making sure the detent
isn’t engaging outside the valid V-block regions; it is simpler to re-position the readhead to
within a few mm.

After ensuring the readhead position has changed by less than a few mm, the most direct
way to correct the settings is as follows:

1. Command the drum to each instrument position.

2. At each position, when the detent mechanism engages, it will pull the drum into the
correct position. (This method is only suitable when the shift is ≤ 1 cm, to ensure that
the detent mechanism is only operated when it’s near the actual v-block position.)

3. Record the ROTATRAW value for the position.

4. Use the ROTATRON keyword (see 12.4) to update the mapping between named and
encoder positions.

5. After updating ROTATRON, command the module to each of the drum positions again,
and confirm the new ROTATRON positions are correct.

6. After confirming that ROTATRON is correct, update the RON LIST definition in the
svn source file kroot/kss/K1DM3/k1dm3/xml/ROTAT.defs, then change directory to
kroot/kss/K1DM3/k1dm3/, make install, kdeploy, and svn commit so that the con-
figuration data in svn matches the cached ROTATRON values.

∗ A tolerance of x counts means that the dispatcher considers a move to have succeeded if the achieved
position is within x counts of the target position.

110

Appendix C

Modifying k1dm3saf Galil Code

On rare occasions, you may need to modify the code burned into the Safety System Galil
RIO. For example, you may decide permanently change any of the parameters configured
into the Galil, such as the size of the “slow” zones.

The safety system Galil code is in the svn repository location

kroot/kss/K1DM3/k1dm3saf/galil/

To change a configuration parameter, edit the file safetyGalil.defs. Most of the param-
eters are defined directly in this heavily-commented file.

To change the Galil logic, edit safetyGalil.code.in. Embedded in that file are lines
such as

REM ...

which is comment text, and is stripped before downloading to the Galil, and lines that look
like:

REQUIRE hiband $(HIBAND)

which might read, after substitution of the macro:

REQUIRE hiband 40960

The REQUIRE lines, are used by our Galil downloader application, gdownload, to know that
Galil burned-in variables should have specific values, such as hiband = 40960.

After editing the safetyGalil.xxx files, you must generate the updated code and down-
load it to the Galil as follows:

1. On the build host, k1dm3build, generate the code for the galil from the *.in and
*.defs files, and install on the instrument host:

% make install

% kdeploy -a

2. On the instrument host, k1dm3server, download the code to the Galil, and burn it
in:

111

APPENDIX C. MODIFYING K1DM3SAF GALIL CODE ver 3.7b

(a) Stop any currently-running code:

% telnet k1dm3-galil-safety

: ST

(b) Download the new code to the RIO:

% safety.galil.installer download

Answer y to the question about proceeding.

If you failed to stop the running code before doing the ’make download’, you’ll
get a diagnostic like the following:

:

:MG_NO

6.0000

:Can’t download: threads are running! MG _NO = 6.0000

make: *** [dl-safety] Error 1

In that case, telnet to the Galil and do ST, as shown above, in step 2a.

If the download doesn’t finish correctly, you’ll get a diagnostic such as the fol-
lowing:

::1 Unrecognized command

:

Failed to get ":: 0\n:" ack in 2000 ms; got: "::1 Unrecognized command

:"

In that case, repeat the download command (step 2b), and the download will
always succeed (in my experience).

(c) If any Galil variables (parameters) are changed, you’ll see a diagnostic similar to
the following:

Require X0retr=506984, but on Galil X0retr=504650.0000

22/23 variables matched

In that case, you must telnet to the Galil, hand-enter the required values, and
burn them in using BV. For example, continuing the example above, you’d type:

% telnet k1dm3-galil-safety

: X0retr=506984
: BV

(d) Then burn in new code, reset the Galil to trigger any #AUTO code, and burn in
any parameters that were adjusted by the #AUTO code:

: BP
: RS
: BN

3. Verify that the code on board the Galil still matches the expected code, after doing
the reset:

% safety.galil.installer verify

112

ver 3.7b

Answer y to the question about proceeding.

If you forgot to burn variables (step 2c) or burn the code (step 2d), you’ll see mis-
matches here.

113

Appendix D

Modifying k1dm3 Galil Code

From time to time, an update to the galildisp application will require updated code on board
the Galil.

D.1 Introduction

Galildisp stores the running version of the on-board code in:

$RELDIR/var/svc /svc dispatch n /download.galil

For K1DM3, svc is k1dm3, and n is the dispatcher number: 1 for swingarm, 2 for drum, or
3 for dock.

You can test if an update to galildisp has changed the code by generating the new
version and comparing it to the existing version. To generate the code required by the
currently-installed version of galildisp, use:

$RELDIR/bin/galildisp.tcl -gx path svc dispnum

For example, for k1dm3 dispatchers #1 and #2 (swingarm control and rotation control,
respectively), use:

$RELDIR/bin/galildisp.tcl -gx "foo1" k1dm3 1

$RELDIR/bin/galildisp.tcl -gx "foo2" k1dm3 2

In this example, galildisp.tcl will generate the code, leave it in files foo1 and foo2, respec-
tively, and then exit. (If you pass an empty string for the path, galildisp.tcl will install the
code into its runtime location.)

The generated code always begins with a Galil no-op instruction that contains a check-
sum:

NO CKSUM nnnnnn

By comparing the first line of a file you generate (foon) with the first line of the existing
runtime file, you will know if there are any changes required to the onboard code.

When a galildisp dispatcher is (re)started, it always generates the code that it expects to
find on board, burned into the Galil. If that version of the code isn’t in the download.galil
file, it moves the previous version to the Old subdirectory, and freshens download.galil

with the correct code. The dispatcher then connects to the Galil, compares the on-board
checksum to the checksum in the on-disk file, and quits if the checksums don’t match.

114

ver 3.7b D.2. DOWNLOADING CODE FOR GALILDISP

D.2 Downloading Code for Galildisp

Generally, the sequence for downloading and burning-in fresh code for the Galil is:

• Stop the dispatcher if it is running.
• Stop any code currently running on the Galil.
• Download the new code.
• (optional) Burn in the new code.
• (optional) Execute RS to execute any #AUTO routine from the new code.
• (optional) Execute BN and BV to burn in parameters and variables set by the Galil

automatic routine #AUTO.
• Verify that the code on board the Galil matches the source file.
• Restart the stopped dispatcher.

In detail, the steps are:

1. Stop the dispatcher if it is running, using one of the following:

% k1dm3 stop swingarm or
% k1dm3 stop drum or
% k1dm3 stop dock

2. Stop any code currently running on the Galil, being sure to select the correct Galil:∗

• % telnet k1dm3-galil-arm or
% telnet k1dm3-galil-drum or
% telnet k1dm3-galil-dock

• Press Return a couple of times until you get a colon (:) prompt.

• Enter ST

• Wait for the next colon prompt.

• Quit telnet.

3. Download the new code.

Run the correct command to download to the correct Galil:

% k1dm3.galil.installer download drum or
% k1dm3.galil.installer download swingarm or
% k1dm3.galil.installer download dock

Answer y to the question about proceeding.

The command will execute the correct download command, and will include a check
that the serial number has the expected value.

Serial numbers and Galil IP addresses are defined in

svn/kroot/kss/K1DM3/Hosts/k1dm3Hosts.defs

∗ For convenience, the k1dm3server:/etc/hosts file defines the following hostnames: k1dm3-galil-arm,
k1dm3-galil-drum, and k1dm3-galil-dock. However, these are not used by the K1DM3 software itself,
which always uses the IP addresses defined in svn/kroot/kss/K1DM3/Hosts/k1dm3Hosts.defs. These entries
should match the convenience entries in /etc/hosts.

115

APPENDIX D. MODIFYING K1DM3 GALIL CODE ver 3.7b

Special case: if you are preparing a new Galil that doesn’t have the address of one of
the in-use Galil’s, you can hand-issue the download command:

$RELDIR/bin/gdownload --download galilIPaddress codepath

e.g.

$RELDIR/bin/gdownload --download 192.168.23.222 \
$RELDIR/var/k1dm3/k1dm3 dispatch 1/download.galil

where galilIPaddress is the new Galil’s IP address, and codepath is the path to the
Galil code. Double-check that you are using the correct IP address!

4. Optional steps: Burn in the code, then reset the Galil (causing the Galil’s #AUTO

routine to run), and burn in variables and parameters. If you don’t burn them in,
they won’t persist across a Galil power cycle or reset. In turn, the #AUTO routine may
have set parameters or variables that should always persist, whether or not #AUTO

runs, so you should probably also do BN (burn parameters) and BV (burn variables).

The K1DM3 E-stop switch activates the Abort input on the Galil. By default, this
stops programs as well as axes, and so it will stop the #AUTO routine from running. So,
in order to be able to run #AUTO, we need to configure the Galil to not stop programs
from running, which is done with CN,,,,1, and then burn that setting so that it
survives a reboot.

To do these steps:

• Telnet to the Galil:
% telnet k1dm3-galil-arm or
% telnet k1dm3-galil-drum or
% telnet k1dm3-galil-dock

• Press Return a couple of times until you get a colon prompt.
After each of the following commands, wait for a colon prompt. (Some of these
commands will take up to a couple of seconds to return a prompt.)

• Burn the program: BP

• Set no-stop-programs, and burn: CN,,,,1;BN

• Reset the Galil, and let its #AUTO run: RS
Wait for 1 second after the fresh prompt, then:

• Burn in the parameters set by #AUTO: BN

• Burn in the variables set by #AUTO: BV

• Quit telnet.

5. Finally, check that the correct code is still present after any reset.

If you used k1dm3.galil.installer, then you can simply do one of:

% k1dm3.galil.installer verify drum or
% k1dm3.galil.installer verify swingarm or
% k1dm3.galil.installer verify dock

Otherwise, you can type in the command yourself:

116

ver 3.7b D.2. DOWNLOADING CODE FOR GALILDISP

$RELDIR/bin/gdownload --verify galilIPaddress codepath

6. Restart the dispatcher that was stopped in step1:

% k1dm3 start [swingarm|drum|dock]

117

Appendix E

How to do a Fresh Install

From time to time it may be necessary to do a completely fresh install of the K1DM3 code.
This might occur after the instrument computer is replaced, or after the OS is updated, or
simply to test a new major software release.

Note: the $KROOT/var directory is not simply impermanent data. Be sure to
preserve the existing $KROOT/var, and copy it to the new installation. You may
discard the older logs if you want from $KROOT/var/log/, but do not discard
the data in $KROOT/var/svc / and $KROOT/var/state/. Just as the operating
system stores various data files in /var/, such as cron files in /var/spool/cron/,
so do the K1DM3 daemons store non-volatile user-supplied configuration data
in subdirectories of $KROOT/var.

For example, k1dm3 stores its user-configurable keywords, such as EL MAXWAIT

(the maximum time allowed for the telescope to reach the required elevation for
deploy or retract), under $KROOT/var/k1dm3/. Similarly, k1dm3mon stores its
user-configurable keywords, such as MAX MOTOR ON (the maximum time motor
power may be on before raising an alert), under $KROOT/var/state/k1dm3mon/.

E.1 Backups

The following are the minimum system backups that should be done for the instrument
computer, in order to assure a seamless transition if the K1DM3 software needs to be re-
installed:

• All changed system configuration items.

• The directories /kroot/var/k1dm3/ and /kroot/var/state/k1dm3mon/. Recommen-
dation: back up these directories daily.

E.2 System Configuration

The svn repository directory K1DM3/Doc/ has a set of files that fully document the instru-
ment host configuration as it was during instrument development and testing at UCO, in
the files named HostAdminxxxx.txt. Copies of all changed files are in the subdirectory

118

ver 3.7b E.3. SOFTWARE INSTALLATION

ModifiedFilesPreship/. However, the OS was re-installed at Keck to suit WMKO’s pre-
ferred configuration, so at this writing, the files in the repository are somewhat dated.
Among other things, the set of installed packages is smaller than the set used at UCO; the
network interfaces are naturally configured differently; no Postgres daemon is running on
the instrument host; and of course dcsRotSim is not in use on the production server.

Nonetheless, the HostAdminxxxx.txt files contain important system configuration changes
that should be preserved across host replacements, so until they are superceded by WMKO-
provided configuration information, they should still be consulted for configuring a new
system.

E.3 Software Installation

Software installation is straightforward:

1. On the new instrument host, k1dm3server, use your backups to restore the directories
/kroot/var/k1dm3/ and /kroot/var/state/k1dm3mon/ to their last-known state.

2. On the build host, k1dm3build, as user k1dm3bld, check out the module k1dm3 from
the repository.

3. Build and deploy the software following the standard WMKO deploy instructions.

119

Bibliography

Deich, W. T. S.
2014. EMIR: a configurable hierarchical system for event monitoring and incident re-
sponse. In Proc. SPIE, volume 9152.

Galil Motion Control
2016. RIO-47xxx User Manual, rev. 1.0q.

Lanclos, K. and W. T. S. Deich
2012. A Complete History of Everything. In Proc. SPIE, volume 8451.

Lupton, W.
1997. Updated DCS Keyword Reference Manual (partial).

Ratliff, C.
2018a. K1DM3 Design Note: 872-LTN1039. UCO Technical Notes, 872(1039).

Ratliff, C.
2018b. K1DM3 Design Note: 872-LTN1040. UCO Technical Notes, 872(1040).

Ratliff, C., W. Deich, and J. Cabak
2019. K1DM3 Design Note: 872-LTN2006. UCO Technical Notes, 872(2006).

Sandford, D.
2019. K1DM3 Electronics — placeholder reference. UCO Design Notes??

Tripsas, A., D. Cowley, and J. Cabak
2016. K1DM3 Design Note: Come-along Procedure at Horizon. UCO Design Notes.

120

Subject Index

M3AGENT, 29

Adjusting Encoders, 109
Assemblies

CLAMPS, 22, 89
DRUM, 23, 87
M3MAN, 23, 89
SWINGARM, 22, 87

Assembly, 22

Bypassing Sequencers, 42

Cass, see Positions
Components, 21
Compound keyword, 22
Control

Low-level, How-to, 48

Deploy
Elevation, 13, 44, 93

Deploy, see aso Positions13
Digi-stage, 21
Dispatcher, 14

No-Dock version, 19
Standard Interfaces, 29
Starting/Stopping, 17
Suspending, 19

Drum
Minimum conditions, 42
Overview, 6

Electronic lockout, see Lockout,
Electronic (ELO)

Elevation
Deploy, 13, 44, 93
Retract, 13, 94

Elevation Requirement, 12

ELO, see Lockout, Electronic (ELO)
(Electronic lockout), 62

Galil, 13
Galildisp, 14, 66
Graphical Interfaces, 36

Tcsgui, 36
k1dm3 gui, 38
k1dm3mon gui, 40
Engineering, 38

GUI’s, 36

Hand Paddle, 29, 33

Interfaces
Graphical, 36

Interlocks, 41
XMV keywords, 41

k1dm3 service, 21
k1dm3.io, 74
k1dm3.summarize, 71
k1dm3 gui, 38
k1dm3mon, 64
k1dm3mon gui, 40
k1dm3saf service, 62
Keyword List, see Index of Keywords

LBC1, see Positions
LBC2, see Positions
LNas, see Positions
Lockout, software

Recovery, 53
Low-level Control

How-to, 48

M3AGENT, see Sequencer

121

SUBJECT INDEX ver 3.7b

Manual Operations, 29, 33
Minimum Operating Conditions, 42
Mirror90, see Positions
MirrorUp, see Positions
Monitor Service, 64
Motion Controllers, 13
Motor stage, 21

Network, 15
No-Dock Dispatcher, 19

Overrides
XSAFETY flag, 44
Clamps, 44, 45
Drum, 46
Non-overrideable, 43
Swingarm, 44, 45

Position Tolerances, 109
Positions

Cass, 13
Deploy, 13
LBC1, 13
LBC2, 13
LNas, 13
Mirror90, 13
MirrorUp, 13
RBC1, 13
RBC2, 13
Retract, 13
LNas, 13
Stowed, 13

Power Outage, 56

RBC1, see Positions
RBC2, see Positions
Recovery

After power outage, 56
General Tips, 47

Recovery – Specific issues
Air supply stuck, 52
Amplifier fault, 50
Dispatcher reconnect fails, 49
Dock pin reporting incorrect, 56
Dock pin stuck, 55
Galil reconnect fails, 49
In-tower switch failure, 56
Mirror-down operation, 52
Misaligned actuators

Arms not past deploy point, 54
Arms past deploy point, 54

Software lockout, 53
Swingarm encoder – bad value, 55
Swingarm in hard stop, 53
Swingarm overshot V-blocks, 55
Swingarm past deploy point, 53
Unclosed clamps, 51

false alarm, 50
USEDCS engineering flag, 56

Replacing Encoders, 109
Restarts

Periodic, 20
Retract

Elevation, 13, 94
Retract, see Positions
RNas, see Positions
Routine Operations

M3AGENT, 29
Hand Paddle, 29
TCS, 29

SASS, see Swingarm Safety System
Sequencer, 23

m3.xxxx , 32
advantages, 24
Bypassing, 42
example, 23
monitoring, 27

Sequencers
ACTIVATE, 24
M3AGENT, 27, 32

Services
k1dm3, 14, 21
k1dm3mon, 14, 64
k1dm3saf, 14, 62
Starting/Stopping, 17

Software lockout
Recovery, 53

Stages
AIRSUPP, 78
ARM A , 79
ARM B , 79
CLAMP x , 78
DETENT, 78
ROTAT, 79
ROTB, 79

Stowed, see Positions

122

ver 3.7b SUBJECT INDEX

Suspending Dispatchers, 19
Swingarm

Minimum conditions, 43
Overview, 9

Swingarm Safety System, 60

TCS, 27, 31
Tcsgui, 36
Telescope

Elevation, see Elevation

Temporary Override, 58
Tolerances, 109

USEDCS engineering flag, 31, 56
Utilities

k1dm3.io, 74
k1dm3.summarize, 71

XMV keywords, 41

123

KTL Keyword Index

Emir Standard Keywords
cond ACK, 101
cond DIS, 102
cond MSG, 102
cond REM, 101
cond STA, 101
grp ACK, 102
grp CNO, 102
grp DIS, 102
grp MEM, 102
grp MSG, 102

Galildisp Standard Controller Keywords
CTRLx ADR, 77
CTRLx AUX, 77
CTRLx CLK, 77
CTRLx ERR, 77
CTRLx GSS, 77
CTRLx MSG, 77
CTRLx THD, 77

Galildisp Standard Digi-axis Keywords
dax CMT, 78
dax CON, 78
dax DCC, 78
dax ENG, 78
dax ENT, 78
dax ERM, 78
dax ERR, 78
dax LCK, 78
dax LIM, 78
dax MSG, 78
dax POS, 78
dax PSE, 78
dax RCD, 79
dax STA, 79
dax STP, 79

dax TAG, 79
dax TRG, 79
dax XMV, 79

Galildisp Standard Digi-like Assembly
Keywords

dig ASM, 90
dig CMP, 90
dig CMT, 90
dig CON, 90
dig ENG, 90
dig ENT, 90
dig ERM, 90
dig ERR, 90
dig LCK, 90
dig MSG, 90
dig POS, 90
dig PSE, 90
dig STA, 90
dig STP, 90
dig TAG, 91
dig TRG, 91
dig XMV, 91

Galildisp Standard Dispatcher Keywords
DISPx BITGP, 75
DISPx COMBO, 75
DISPx COMBX, 75
DISPx DIGI, 75
DISPx MOTOR, 75
DISPx BCH, 75
DISPx CLK, 75
DISPx DBG, 76
DISPx DISABL, 76
DISPx DWIM, 76
DISPx ERR, 76
DISPx HOM, 76
DISPx HUP, 76

124

ver 3.7b KTL KEYWORD INDEX

DISPx LDF, 76
DISPx LOG, 76
DISPx MSG, 76
DISPx NOTE, 76
DISPx PID, 76
DISPx PSE, 76
DISPx REQ, 76
DISPx RSS, 76
DISPx SCK, 76
DISPx SHUTDN, 77
DISPx STA, 77
DISPx SUSP, 77
DISPx THREAD, 77

Galildisp Standard Motor axis Keywords
mot AST, 79
mot CAL, 79
mot CED, 80
mot CMT, 80
mot CON, 80
mot DCC, 80
mot ENC, 80
mot ENE, 80
mot ENG, 80
mot ENT, 81
mot ERM, 81
mot ERR, 81
mot GSC, 81
mot GSR, 81
mot GSS, 81
mot GST, 81
mot GSW, 81
mot GTE, 81
mot LCK, 81
mot LIM, 81
mot MAP, 82
mot MOD, 82
mot MOE, 82
mot MOO, 82
mot MSG, 82
mot MSP, 83
mot NAM, 83
mot NPX, 83
mot ORD, 83
mot PSE, 83
mot RAW, 83
mot RCD, 83
mot REL, 83
mot RON, 83

mot SPD, 84
mot STA, 84
mot STP, 85
mot SWT, 85
mot TAG, 85
mot TNM, 85
mot TOR, 85
mot TOS, 85
mot TRD, 85
mot TRG, 85
mot TRL, 85
mot TRN, 85
mot TSP, 85
mot TVA, 85
mot TVX, 85
mot VAL, 86
mot VAX, 86
mot VEL, 86
mot VEX, 86
mot XMV, 86
mot ZPX, 86

Galildisp Standard Motor-like Assembly
Keywords

asy ASM, 87
asy CAL, 87
asy CMP, 87
asy CMT, 87
asy CON, 87
asy ENG, 87
asy ENT, 88
asy ERM, 88
asy INI, 88
asy LCK, 88
asy MOD, 88
asy MOE, 88
asy MOO, 88
asy NAM, 88
asy NMS, 88
asy PSE, 88
asy RAW, 89
asy REL, 89
asy STA, 89
asy STP, 89
asy SWT, 89
asy TAG, 89
asy TNM, 89
asy TRG, 89
asy TRL, 89

125

KTL KEYWORD INDEX ver 3.7b

asy VAL, 89
asy VAX, 89
asy VX2, 89
asy XMV, 89

K1dm3 Other Keywords
ACTIVATE, 92
ACTIVATE xxx , 93
ACTIVATE ARM, 93
ACTIVATE DRUM, 93
ACTIVATE OBS, 93
ACTIVATE TRANS, 93
ACTIVERM, 93
ACTIVLOG, 93
ACTIVMSG, 93
ACTIVRUN, 93
AIRPRESSX, 95
ANALOGd n , 95
ARMDIFF, 95
CABLES, 95
CABLESET, 95
CLAMP a CLO, 95
CLAMPCURR, 95
CLAMPSCLOSED, 96
CLAMPSTEADY, 96
CLAMPUNFILT, 96
DEADMAN{1,2,3}, 96
DOCK HALL, 96
DOCKBITSOUT, 96
DRUMSTA STOP, 96
EBOX 3 3V, 94
EBOX 3 3V R, 94
EBOX 5V, 95
EBOX 5V R, 95
EBOX AIR T, 95
EBOX AIR TR, 95
EL, 92
EL DEPLOY, 12, 93
EL DMD, 93
EL DMDX, 93
EL MAXWAIT, 12, 94
EL NEED, 94
EL RETRACT, 12, 94
EL SATISFIES, 94
ELALERT, 94
ELMAX, 94
ELMIN, 94
ESTOP, 96

GETAIR, 96
INBLOCK11, 96
INNER24V, 96
INNER48V, 96
INR AIRPRESS, 96
LK xxx , 96
LOCATION, 96
M3AGENT, 92
M3ENG, 31, 93
M3ENT, 93
M3ERM, 93
M3LOG, 93
M3MSG, 93
M3RUN, 93
MAN OVERRIDE, 97
OUTER48V, 96
OVERSPEED, 97
OVERTEMP, 97
PADDLE, 97
PENDINGSTOP, 97
PINNED, 97
ROTATSW, 97
ROTSTA STOP, 97
ROTTIME, 92
SAF EAG, 91
SAF EIR, 91
SAF EOK, 91
SAF ESP, 91
SAF HBT, 91
SAF RER, 91
SAF VBR, 91
SAFETYBITS1, 91
SAFETYBITS2, 91
SWINGSTA STOP, 97
TERTABRT, 92
TERTABRTC, 31
TERTDEST, 92
TERTERRS, 92
TERTERVL, 92
TERTHALT, 92
TERTHALTC, 31
TERTINIT, 92
TERTINITC, 31
TERTMOVE, 92
TERTMOVEC, 31
TERTPOSN, 92
TERTSTAT, 92
TERTSTBY, 92

126

ver 3.7b KTL KEYWORD INDEX

TERTSTBYC, 31
TERTSTST, 92
USEDCS, 91
WITHDOCK, 97

K1dm3saf Keywords
ALL OK, 98
ARM A ENE, 99
ARM B ENE, 99
ARMDIFF, 99
CT NOTOK, 99
CT RANGE, 99
CT SPEED, 99
DISP0CLK, 98
DISP0DBG, 98
DISP0DWIM, 98
DISP0ERR, 98
DISP0HOM, 98
DISP0MSG, 98
DISP0PID, 98
DISP0REQ, 98
DISP0SHUTDN, 98

DISP0STA, 98

ENC AGREE, 99

ENC INRANGE, 99

ENCBAD0, 99

ENCBAD1, 100

ENCODER0, 99

ENCODER1, 99

INPUTS, 100

LOOPSTATUS, 99

MAXSPEED, 100

OUTPUTS, 100

REGION, 100

SAMPNUM, 100

SE0, 100

SE1, 100

SPEED, 100

SPEED OK, 99

SUMMARY, 99

ZC, 100

ZD, 100

127

	1 Overview
	1.1 Active Components of K1DM3
	1.1.1 Drum
	1.1.2 Swingarm

	1.2 Position Summary
	1.3 Motion Controllers
	1.4 Software
	1.4.1 Back-end Services
	1.4.2 End-User Applications

	1.5 K1DM3 Private Network

	2 Starting, Stopping, Suspending Services
	2.1 Starting/Stopping
	2.2 Suspending Dispatchers
	2.3 Special No-Dock Engineering Version
	2.4 Periodic Restarts

	3 Components, Assemblies, and Sequencers
	3.1 Elementary Components
	3.2 Compound Keywords
	3.3 Assemblies
	3.4 Sequencers
	3.5 The ACTIVATE Sequencer
	3.6 The M3AGENT Sequencer
	3.7 Monitoring Sequencer Execution

	4 Dispatcher Interfaces for Routine Operations
	4.1 TCS Operations
	4.2 M3AGENT
	4.3 Hand Paddle
	4.3.1 LED's
	4.3.2 Buttons

	5 GUI's
	5.1 Tcsgui
	5.2 The Engineering GUI
	5.3 The K1dm3mon GUI

	6 Restrictions & Interlocks
	6.1 Introduction
	6.2 Bypassing the M3AGENT Sequencer
	6.3 Conditions Without Override
	6.3.1 Swingarm
	6.3.2 Drum

	6.4 Overridable Conditions

	7 Recovery From Failures
	7.1 General Troubleshooting Tips
	7.2 Low-level Actuator Operations
	7.3 Specific Issues
	7.3.1 Reconnect failure
	7.3.2 Amplifier fault
	7.3.3 Erroneous unclosed-clamps
	7.3.4 Actual unclosed clamps
	7.3.5 Air supply nozzle will not disconnect.
	7.3.6 Need to operate swingarm, mirror facing down
	7.3.7 Software lockout is active
	7.3.8 SASS: Swingarm past deploy point
	7.3.9 SASS: Swingarm in hard stop
	7.3.10 SASS: misaligned arms
	7.3.11 SASS: Arms misaligned and are past deploy point
	7.3.12 SASS: overshot V-blocks
	7.3.13 SASS: impossible encoder value
	7.3.14 Docking pin becomes stuck
	7.3.15 Docking pin position error
	7.3.16 In-tower signal failure

	7.4 Power Outage
	7.5 SASS Temporary Override Procedure

	8 Swingarm Safety System (SASS)
	8.1 Background
	8.2 The Safety Monitor and Outputs
	8.3 k1dm3saf

	9 The K1DM3 Monitor
	10 Galildisp Configuration
	10.1 Major Elements of Control
	10.1.1 Motor Axes and Digi-Axes
	10.1.2 Non-Axis Keywords
	10.1.3 Sequencers

	10.2 Dispatcher and Controller Information
	10.3 Configuration Files
	10.3.1 Template and Definition files
	10.3.2 The .defs and XML files
	10.3.3 The .conf files

	10.4 Custom Dispatcher Code

	11 Utility Programs
	11.1 k1dm3.summarize
	11.2 k1dm3.status.email
	11.3 k1dm3.io

	12 k1dm3 KTL Service Keywords
	12.1 Dispatcher Keywords
	12.2 Controller Keywords
	12.3 Digi-Axis Keywords
	12.4 Motor-Axis Keywords
	12.5 Assembly (Combo-Axis) Keywords
	12.5.1 Motor-like Assemblies
	12.5.2 Digi-like Assemblies

	12.6 Status from Safety System
	12.7 TCS Interface Keywords
	12.8 Major Sequencer Keywords
	12.9 Elevation Keywords
	12.10 Environment Keywords
	12.11 Other Keywords

	13 k1dm3saf KTL Service Keywords
	14 k1dm3mon KTL Service Keywords
	A Useful Numbers
	A.1 Network Addresses
	A.2 Swingarm Safety System
	A.3 Swingarm Actuators
	A.4 Drum
	A.5 Typical Move Times
	A.6 Other Numbers

	B Actuator Calibration and Position Adjustment
	B.1 Swingarm Absolute Encoders
	B.2 Drum Readhead

	C Modifying k1dm3saf Galil Code
	D Modifying k1dm3 Galil Code
	D.1 Introduction
	D.2 Downloading Code for Galildisp

	E How to do a Fresh Install
	E.1 Backups
	E.2 System Configuration
	E.3 Software Installation

	Bibliography
	Subject Index
	KTL Keyword Index

